La ESPOL promueve los Objetivos de Desarrollo Sostenible

Construcción de clones infecciosos para estudios de expresión génica y/o control de patógenos en pitahaya

PROBLEMA

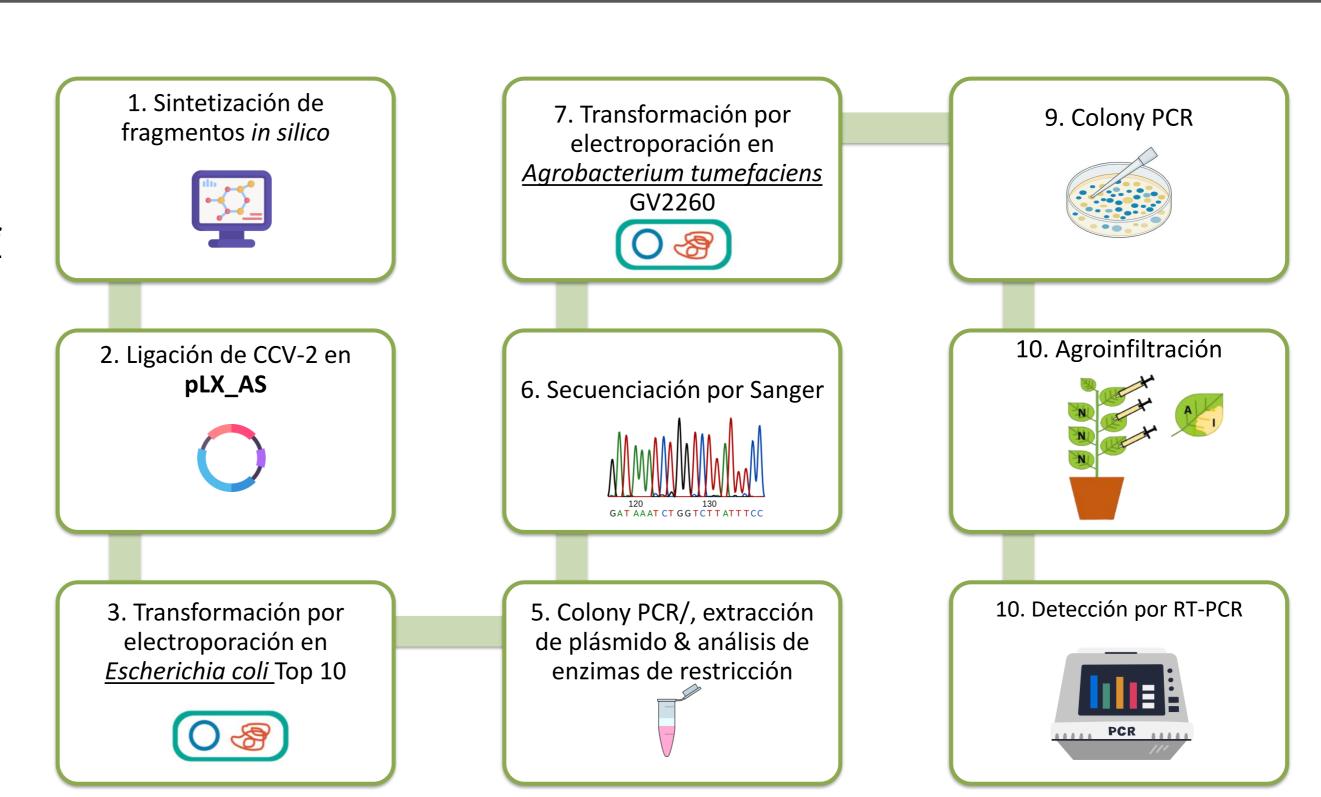
La producción de pitahaya (Hylocereus spp.) ha aumentado sustancialmente en la última década, pero los estudios relacionados con la caracterización molecular de los genes asociados a su productividad, calidad y/o resistencia a patógenos son limitados.

Los 3 tipos de pitahayas cultivados en Ecuador son propagados a través de esquejes de tallo que posteriormente pueden enraizar y establecerse como nuevas plantas. Este método ha resultado en una expansión global del cultivo pero también ha aumentado el riesgo de diseminación de patógenos que afectan su rendimiento y sostenibilidad (Espinoza Lozano et al., 2023).

OBJETIVO GENERAL

Diseñar clones infecciosos basados en un cactus carlavirus 2 (CCV-2) mediante el uso de distintos promotores virales y la adición de la proteína verde fluorescente (GFP) para estudios de genómica funcional y/o control de patógenos en pitahaya (Hylocereus spp.).

PROPUESTA


Metodología

- 1. Ensamblaje Golden Gate (Fig.1)
- 2. Transformación bacteriana en *E.coli* y *A.tumefaciens*
- 3. Agroinfiltración
- 4. Detección por RT-PCR


Constructos virales → VIGs

VIGS (silenciamiento génico inducido por virus)

Caracterizar posibles genes involucrados en el crecimiento, apariencia y bloquear completamente los factores que permiten la propagación de patógenos.

pLX-AS_CCV-2_Pit (GenBank No. PP751658)

derecho (RB) del vecrtor binario pLX_AS.

RESULTADOS

Detección por RT- PCR

- Primers diseñados para la detección de CCV-2 (CP & DET 1) (Fig. 2).
- A los 90 días, se detectó el virus de CCV-2 en dos pitahayas (P3 & P9)
 agroinfiltradas con dos diferentes métodos: agroinfiltración con
 jeringa y corte en bísel (Fig. 3-4).

Ensamblaje de 4 constructos virales basados en CCV-2 editado con GFP y otros promotores derivados del virus de la papa M & X (PVM, PVX)

- Ensamblados con Golden Gate
- Transformados en bacterias
- Stocks de glicerol -80 °C

Figura 3 & 4. Métodos de agroinfiltración en pitahaya.

A) Agroinfiltración con jeringa, B) Corte en bísel

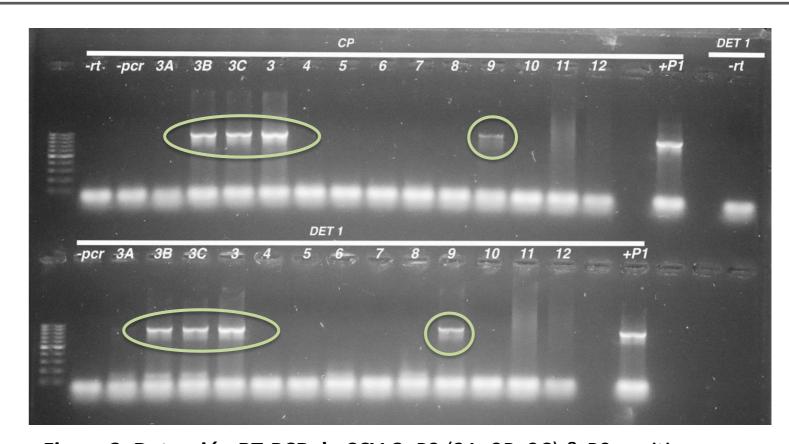


Figura 2. Detección RT-PCR de CCV-2. P3 (3A, 3B, 3C) & P9 positivas para CCV-2 detectados con primers específicos (CP & DET 1)

Versión	Promotor
Versión 1.1	Promotor de CCV-2
Versión 2.6	Promotor de PVM
Versión 3.3	Promotor de PVX
Versión 3.4	Promotor de PVX

Tabla 1. Constructos virales basados en CCV-2 editado con GFP y otros promotores virales.

CONCLUSIONES

REFERENCIAS

- Se desarrolló exitosamente un constructo viral de CCV-2 capaz de infectar a cultivos de pitahaya comerciales.
- Las pitahayas infectadas por CCV-2 no presentaron síntomas visibles.
- Se ensamblaron 4 constructos virales más basados en CCV-2 editado con GFP bajo el control de distintos promotores que provenían de PVM & PVX para futuros estudios con respecto al movimiento sistémico viral y VIGs.

Figura 5. P3 & P9. Pitahayas infectadas con el constructo viral basado en el genoma completo de CCV-2.

[1] Espinoza Lozano et al., 2023. "Ocurrence, Distribution, and Population Structure of Schlumbergera Virus X in Dragon Fruit in Ecuador". *Plant Disease*, 108(3), 587–591.

[2] Fabio Pasin. (2022). "Assembly of plant virus agroinfectious clones using biological material or DNA synthesis". STAR Protocols, 3(4), 101716.

