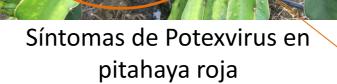


La ESPOL promueve los Objetivos de Desarrollo Sostenible

DISEÑO DE UNA METODOLOGÍA DE RT-PCR MÚLTIPLEX PARA DETECCIÓN DE VIRUS EN PITAHAYA (HYLOCEREUS SPP.)

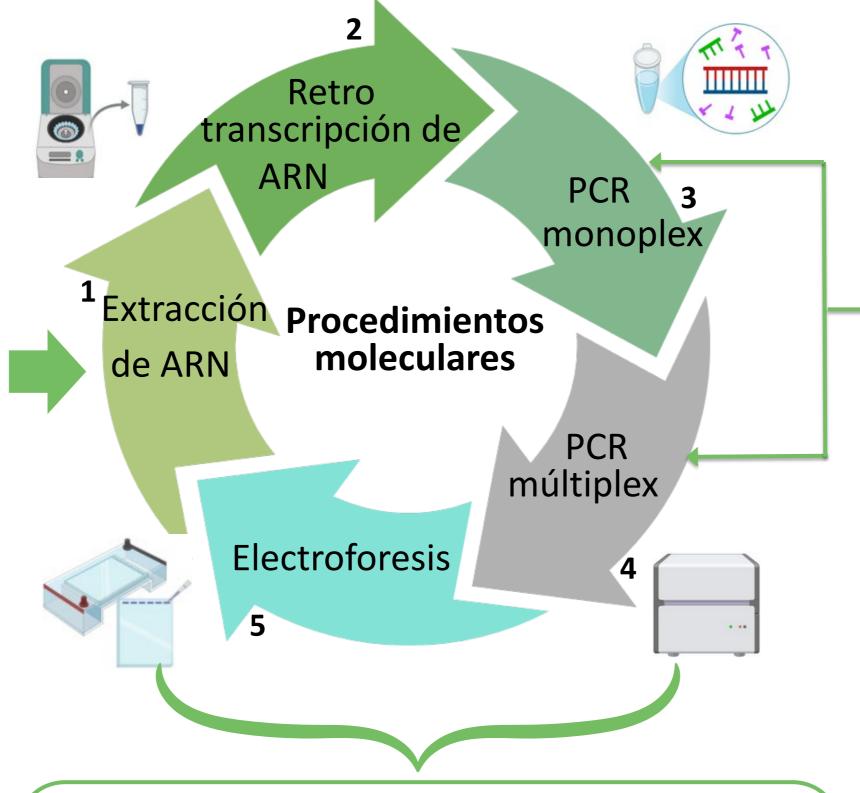
PROBLEMA

En Ecuador, la pitahaya se ha consolidado como un producto no tradicional de creciente importancia económica. Sin embargo, su producción se ve limitada por infecciones virales, siendo prevalentes los del género *Potexvirus* y Badnavirus. La falta de regulación en la distribución de material propagativo, sumado a la rápida expansión de los virus, ha facilitado su introducción, transmisión y coinfección, generando problemas fitosanitarios que pueden comprometer el rendimiento y la calidad del fruto.

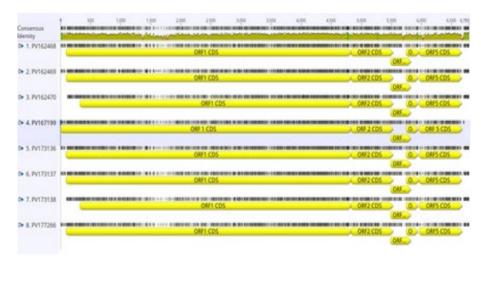


OBJETIVO GENERAL

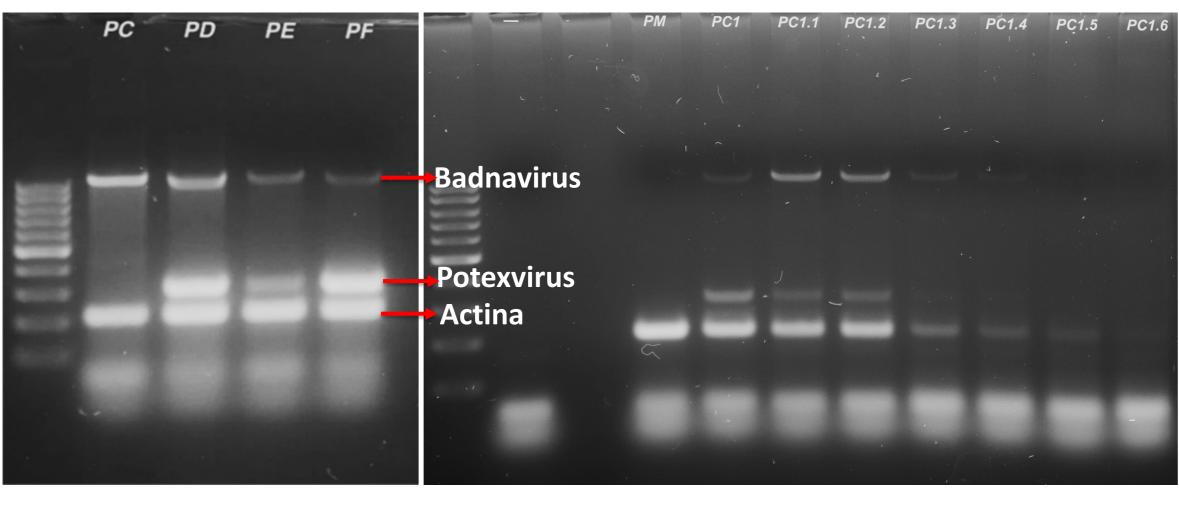
Diseñar una metodología de detección viral simultánea en pitahaya, mediante RT-PCR múltiplex de punto final, para la optimización de su monitoreo fitosanitario y la reducción de costos y desechos asociados al diagnóstico molecular.



PROPUESTA


Pitahayas diagnosticadas con infecciones simples y mixtas de virus: Potexvirus y Badnavirus

n=10 Invernadero del CIBE


ШШ Análisis bioinformático para el diseño de cebadores

 Alineamiento de secuencias virales Clonación de constitutivo (ACT7); control interno

- Validación de sistema múltiplex: eficiencia de cebadores y optimización de parámetros.
- Prueba de sensibilidad para establecer las concentraciones mínimas detectables de ARN.

RESULTADOS

- > Validación individual de cebadores diseñados: todos fueron funcionales, generando productos de amplificación con alta intensidad y especificidad.
- > PCR múltiplex es compatible para la detección de Badnavirus y Potexvirus, junto al control interno de la planta, Actina. Sin embargo, no se logró visualizar en todas las muestras.
- Análisis de sensibilidad: detección eficiente concentración de 5.5 ng/ μ l. A 2.75 ng/ μ l y 1.38 ng/ μ l, se mantuvo la amplificación pero con una disminución progresiva en la intensidad de las bandas.

> Los parámetros del protocolo fueron optimizados:

Componente	Cantidad (µl)	
Buffer (2X)	7.5	
ACT7 iniciador (5 μM)	0.4	
ACT7 reverso (5 μm)	0.4	
Potexvirus iniciador (30 μM)	0.4	
Potexvirus reverso (30 μM)	0.4	
Badnavirus iniciador (20 μM)	0.4	
Badnavirus reverso (20 μM)	0.4	
Molde de ADNc	2	
Agua ultrapura destilada	3.1	
Volumen total	15 μl	

Termociclado

1 CTTTT CTCTGGG			
Ciclo	Proceso	Temperatura	Tiempo
1	Desnaturalización inicial	95 °C	4 min
	Desnaturalización	95 °C	40 s
35	Hibridación	58 °C	30 s
	Extensión	72 °C	1:30 min
1	Extensión final	72 °C	7 min

CONCLUSIONES

La metodología de RT-PCR múltiplex desarrollada permitió la detección simultánea de los virus prevalentes en pitahaya. Su aplicación contribuiría a la detección temprana de infecciones virales, garantizando la sanidad en nuevos proyectos de producción, al tiempo que optimiza costos y reduce desechos en los laboratorios de diagnóstico molecular.

- Se diseñaron y validaron cebadores que permiten la detección de Potexvirus, Badnavirus y del gen constitutivo Actina.
- Se optimizaron los parámetros del protocolo, definiendo las concentraciones de cebadores, volúmenes de reactivos, así como las condiciones de temperatura, tiempo y número de ciclos de termociclado.

