La ESPOL promueve los Objetivos de Desarrollo Sostenible

Diseño de un secador con capacidad de 60 kg para el procesamiento de residuos agrícolas del banano.

PROBLEMA

El Ecuador, uno de los mayores productores de banano, genera grandes volúmenes de residuos vegetales como raquis y pseudotallos que no se aprovechan. En la mayoría de los casos, estos residuos se desechan en campo, se queman o se acumulan en vertederos, contribuyendo a problemas ambientales como la emisión de gases de efecto invernadero, la contaminación del suelo y el agua, y el incremento de plagas. La falta de tecnologías eficientes para el secado de estos residuos limita su transformación en productos de valor agregado, desaprovechando un potencial clave para la sostenibilidad y el beneficio económico de pequeños y medianos productores bananeros.

OBJETIVO GENERAL

Diseñar un secador con capacidad de 60 kg para raquis de banano, priorizando la eficiencia energética, a fin de optimizar el manejo de residuos agrícolas.

PROPUESTA

Para desarrollar nuestra propuesta se tomaron en cuenta varios factores y condiciones predefinidas entre las cuales se encuentran:

- 60kg de capacidad por lote
- Bajo costos de implementación y de mantenimiento
- Bajo consumo de energía

Para el diseño del secador, se emplean fórmulas clave que permiten estimar las necesidades energéticas, térmicas y de masa

Energía solar recibida

$$Q = A * I * \eta$$

Donde;

Q= Energía solar recibida

- A= Área de captación solar
- I= Irradiancia solar promedio
- η = Eficiencia de captación

Balance de masa y energía

$$Q = m * C_p * \Delta T$$

Donde;

Q= Energía necesaria para calentar el aire

- m= Flujo de masa del aire
- C_p = Calor específico del aire
- ΔT = Cambio de temperatura del aire entre entrada y salida

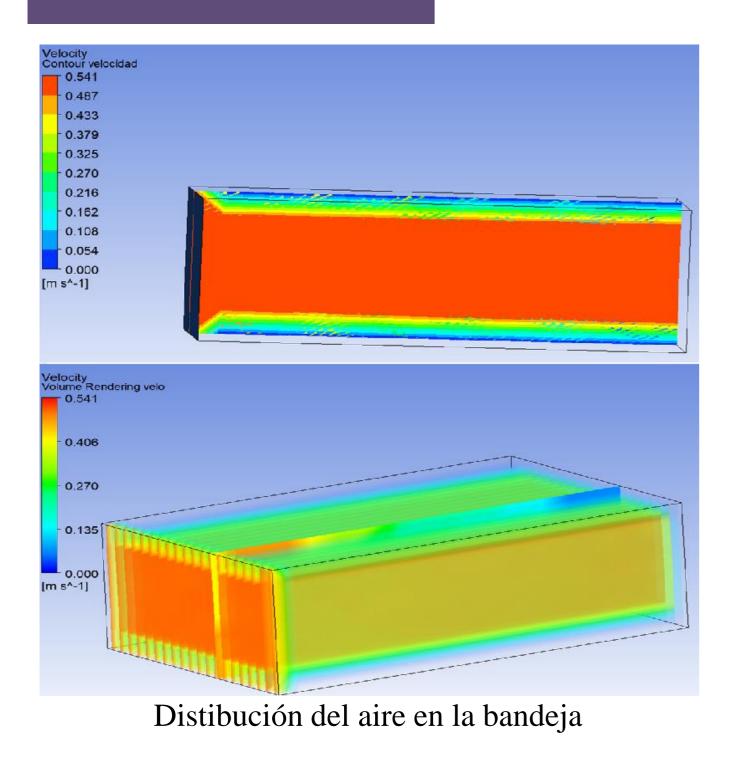
Psicrometría

$$RH = \frac{\rho_V}{\rho_{VS}} \times 100$$

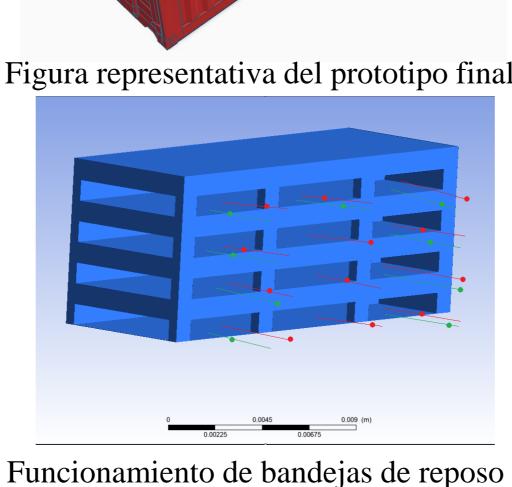
Donde;

RH= Humedad relativa del aire (%) ho_V = Presión parcial de vapor de agua ho_{VS} = Presión de saturación

Densidad del Raquis de Banano


$$\rho hu = \rho se \times (1 + h)$$

Donde;


 $ho_{hu}=$ Densidad de los residuos húmedos (kg/m³). $ho_{se}=$ Densidad de los residuos secos.

h= Fracción de humedad.

RESULTADOS

Insumo	Dimensión	Cantidad	Unidad	P. Unitario (\$)	Costo Total (\$)
Tool de acero	1.80m x				
inoxidable	4.50m x	20	m²	30	600
3mm	2.44m				
Tubos					
galvanizados	17.23m	17.23	m	15	258.45
3mm					
Paneles	1.70m x	3	unidad	120	360
solares	1.20m	3	uiiiuau	120	300
Baterías de	2 unidades	2	unidad	150	300
litio	2 umdaucs		umaaa	150	300
Inversor	1 unidad	1	unidad	200	200
Resistencias eléctricas	1.5m	1	unidad	50	50
Ventiladores	30cm diámetro	2	unidad	40	80
Mano de	_	1	global	300	300
obra	<u>-</u>	1	gionai	300	300
		TOTAL			\$2,148.45

CONCLUSIONES

- Se logró diseñar un sistema de secado eficiente en transferencia de calor y eliminación de humedad. Las simulaciones en ANSYS mostraron una temperatura óptima de 60°C y una distribución uniforme del flujo de aire, mejorando el proceso de secado de los residuos.
- Se obtuvo un sistema económicamente viable con un presupuesto total de alrededor de \$1500, gracias a la selección adecuada de materiales y la integración del sistema fotovoltaico volviéndola así una solución sostenible y rentable.
- Se elaboró un manual de operación detallado que describe claramente el funcionamiento, mantenimiento y cuidado del secador híbrido.

