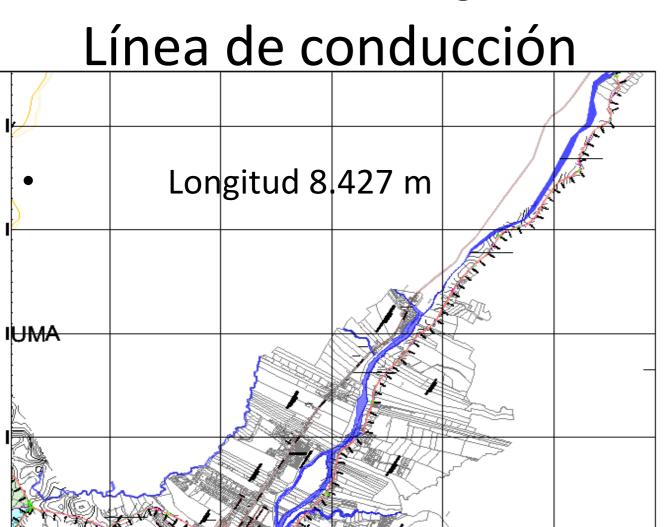
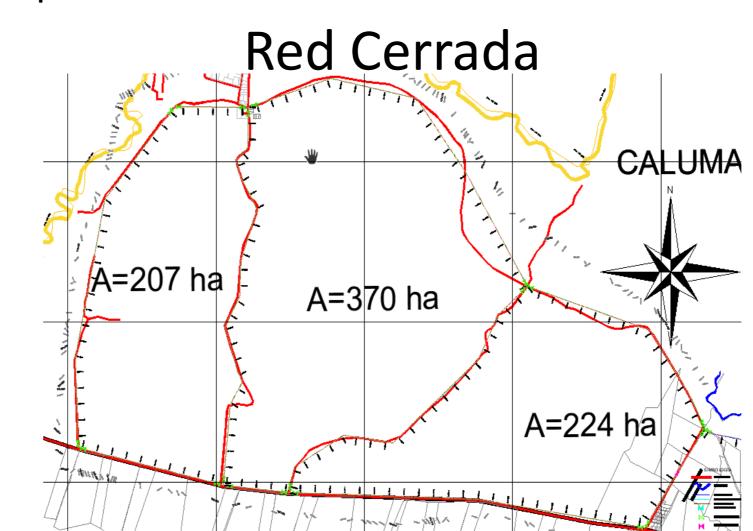
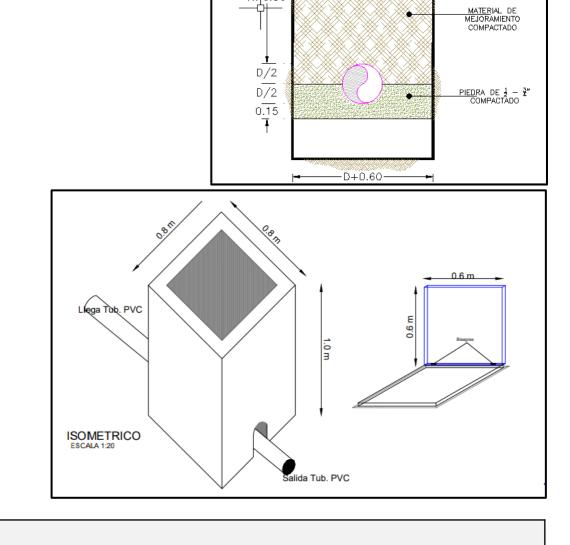
Segunda etapa del Proyecto Hidráulico destinado al riego aprovechando el rio Caluma

PROBLEMA

El cantón Caluma es muy reconocido a nivel nacional por su gran variedad de productos principalmente la producción de naranja. Sin embargo las plantaciones solo reciben beneficios hídrico significativos durante el invierno, la cual presenta un déficit de servicio de agua, que pueda cubrir las necesitades de los cultivos durante la estación seca, en la zona baja de dicho cantón.


OBJETIVO GENERAL


Diseñar las redes primarias de un sistema de distribución para el riego agrícola aprovechando el Río Caluma con la finalidad de lograr cubrir las necesidades hídricas y ambientales de los agricultores del Cantón Caluma.



PROPUESTA

En cumplimiento de los objetivos de desarrollo sostenible 2 y 9 se propone un diseño de sistema de conducción y red de distribución cerrada, la cual las rutas trazadas son las mas optimas y eficientes, cumpliendo con un caudal ecológico propuesto en la primera etapa y también con las normas vigente en nuestro país.

Hardy Cross									
							Elevación	Cota	Presion altura
Tramo	Longitud	D int	Q[m3/s]	Area	Velocidad	Caída. H	nudo final	piezometrica	dinamica Condicion
							293	330.0	36.98ok
1-2	1591.030	0.192	0.038301	0.029	1.320	11.675	270.21	318.3	48.10ok
2-3	2238.070	0.152	0.010382	0.018	0.571	4.569	255.64	313.7	58.10ok
3-4	2416.510	0.190	0.034879	0.028	1.228	15.697	318.76	329.4	10.68ok
4-1	740.820	0.302	0.036699	0.072	0.511	0.553	292	329.4	37.43ok
2-5	2569.560	0.086	0.008839	0.006	1.508	61.489	208.9	256.8	47.92ok
5-6	2515.700	0.086	0.008129	0.006	1.387	51.491	254.68	308.3	53.63ok
6-3	445.290	0.152	0.027061	0.018	1.487	5.354	255.64	313.7	58.02ok
7-5	500.660	0.060	0.003658	0.003	1.302	14.044	208.9	256.7	47.84ok
8-7	2311.050	0.047	0.001062	0.002	0.602	20.458	195.11	242.7	47.59ok
6-8	1006.710	0.072	0.007682	0.004	1.887	45.153	212	263.2	51.16ok

RESULTADOS

Análisis de la calidad del Agua

Parámetros	San Antonio	Escaleras	INEN	TULSMA
Turbidez [NTU]	3.37	2.47	5	-
Conductividad	00.0	00.0		
[µS/cm]	88.6	83.2	-	-
рН	7.34	7.18	6.5 – 8.0	6 – 9
TSD [mg/l]	50.8	49.7	-	-
Oxígeno Disuelto [mg/l]	8.83	9.22	-	3
Temperatura [°C]	23	26	-	-
UFC con gas	29	34		
UFC sin gas	33	35		
Total, de Unidades Formadoras de Colonia	62	69	< 0.2	-
DBO (mg/L)	53	20	6	-
SST (mg/l)	25,0	24,0	1500	
SSF (mg/l)	2,0	5,0	mg/l	-
SSV (mg/l)	23,0	19,0		

La línea de conducción esta formada por una longitud de 8427 m mientras la red cerrada 16335.4 m de tuberia, con sus respectivos accesorios como; valvulas de control, ventosas, purga y cámara rompe presión. Este diseño cuenta con un dimesionamiento aspersores, que trabajan a 35 Psi con sus respectivas areas.

Árα	a m2	Números de		
Aic	a IIIZ	aspersores		
1	191541	340		
2	2010831	4657		
3	1917798	4496		
4	1185232	2610		
5	1402603	3170		
6	697179	1703		
7	498049	1136		

COSTO DIRECTO	\$ 758.307,69
COSTO INDIRECTO	\$ 166.827,69
COSTO TOTAL	\$ 925.135,39

CONCLUSIONES Y RECOMENDACIONES

- Se logró trazar la ruta óptima para la línea de conducción, ajustando a diferentes condiciones caudal ecológico de el cual no afectara la flora y fauna.
- Se pudo comprobar que varios de los parámetros superan los límites permisibles por la INEN para potabilización.
- La red primaria está formada por una red cerrada, compuesta por 3 mallas.
- Se debe realizar un levantamiento topográfico dentro del área de cultivo
- Realizar un diseño de reservorio antes de ingresar a la red cerrada
- Realizar un diseño agronómico al área de cultivo.
- Para reducir los costos se puede realizar excavación manual en las rutas secundarias o terciarias.