SOSTENIBLE

La ESPOL promueve los Objetivos de Desarrollo Sostenible

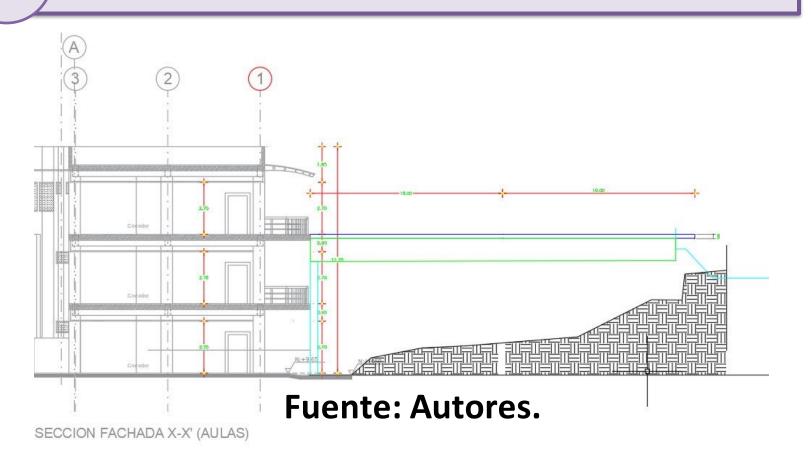
Diseño de puente peatonal sostenible que permita la movilidad entre edificio 14B con patio de comidas en FADCOM.

PROBLEMA

La expansión de la Facultad de Arte, Diseño y Comunicación Audiovisual (FADCOM) presenta un desafío crítico en la conectividad entre el auditorio y el nuevo estudio de grabación, junto al comedor.

Fuente: Autores.

OBJETIVO GENERAL



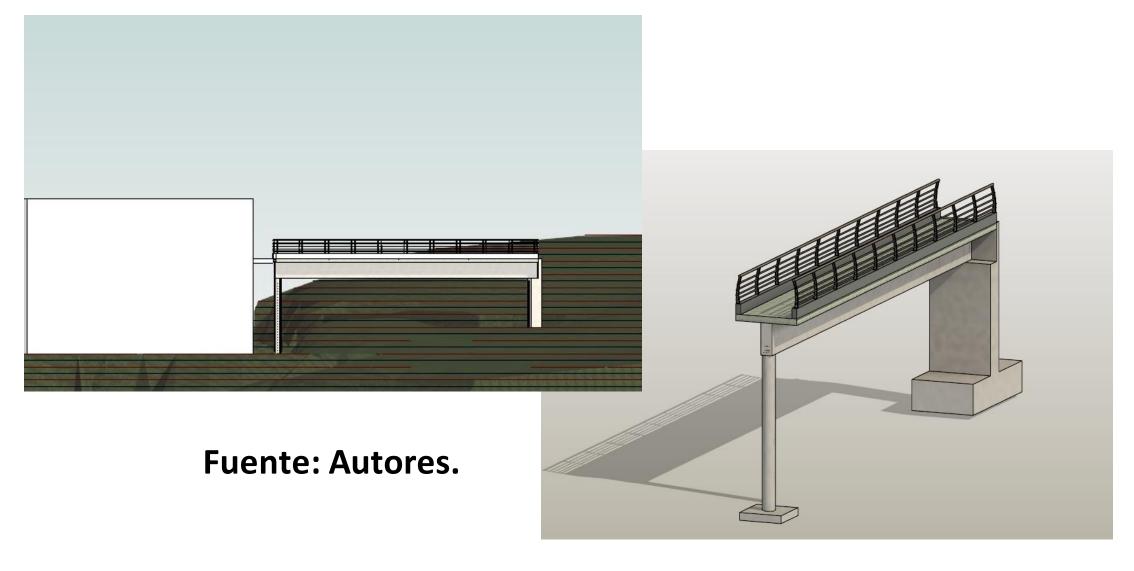
Fuente: Google Earth; Edición propia,2023.

Diseñar un puente peatonal a través de un análisis estructural, cumpliendo con las normas de diseño y especificaciones técnicas, para la mejora de la movilidad de estudiantes, equipos y conexión del auditorio del edificio 14B con la explanada alrededor del patio de comidas en FADCOM, durante los eventos.

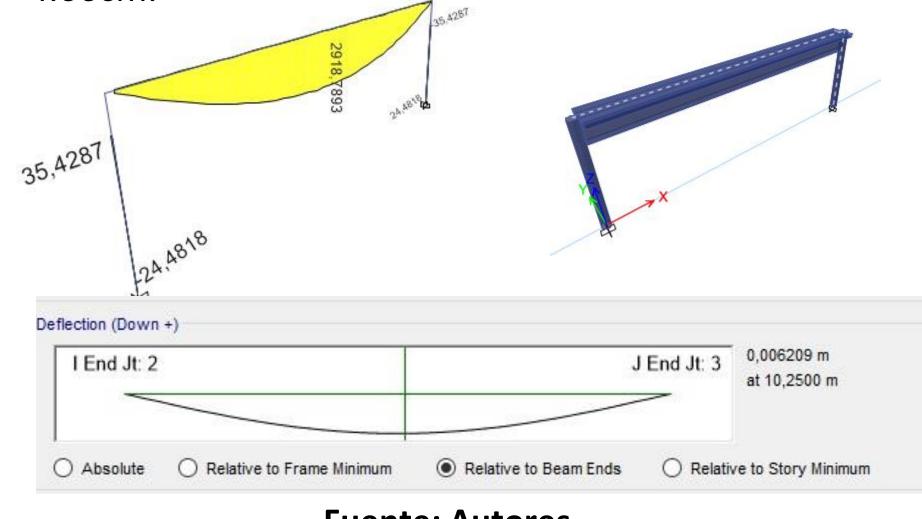
PROPUESTA

- 1 Desafíos de Conectividad y Espacios
- 2 Inclusión de Personas con Discapacidades
- 3 Puente Peatonal como Solución.

Se propone el diseño de un puente peatonal que resuelva los desafíos de conectividad en FADCOM.


El puente causa el menor impacto ambiental debido a los materiales que se usan en su construcción.

Con este puente se pretende la inclusión de personas discapacitadas, a través de accesos.



RESULTADOS

- ✓ Los resultados del diseño proponen una losa de **hormigón armado** cuya longitud es de 20 metros, 2.50 metros de ancho y un espesor de 25 cm. La cual cumple con la resistencia para las cargas vivas de 10.7 kN/m y la carga muerta de 38.8 kN/m.
- ✓ La viga T con un peralte de 1.40 m y apoyos en los extremos, cumple con la profundidad mínima para tramos simples que propone la AASHTO.

✓ Mediante el análisis estructural del sistema vigacolumna y tras considerar las combinaciones de carga se logró determinar que experimenta una deflexión de 6.21mm , lo cual está dentro del rango permisible propuesto por el ACI 318-19,que es de 4.06cm.

Fuente: Autores.

✓ La **subestructura** está conformada por un pilar circular de D= 50cm y un estribo en cada extremo, ambos cumplen con los análisis de volteo, empuje y sísmicos respectivamente, con FS (factores de seguridad) mínimo de 3, como lo indica la normativa para este tipo de elementos.

CONCLUSIONES

- La relación largo/ancho del tablero resultó en un valor de 10, menor a lo que indica la norma(30) para cargas de viento, concluyendo que la estructura es estable aerodinámicamente, lo que infiere que este análisis no sea significativo.
- El proyecto tiene un costo estimado de \$ 49.292,15, y se podrá realizar aproximadamente en 170 días.
- La **pila**(parte de la subestructura del puente), cumple con el criterio **columna fuerte-viga débil**, garantizando de esta manera la **estabilidad** de la estructura, para de ser el caso, resistir cargas laterales significativas.

