La ESPOL promueve los Objetivos de Desarrollo Sostenible

Diseño de un modelo de asignación de flota terrestre en una empresa de transporte de carga

PROBLEMA

El análisis del punto de vista de una empresa de transporte, se evidencia el incremento del 48% en las reservas durante el segundo trimestre de 2024. Sin embargo, se enfrentan desafíos significativos debido a la limitada capacidad de su flota propia y la variabilidad en la disponibilidad de la flota particular, lo que ha llevado al rechazo de reservas y a una baja rentabilidad en algunos casos. La empresa reconoce la necesidad de resolver estos problemas para evitar la pérdida de clientes y mejorar la eficiencia operativa. Para ello, se planea diseñar un modelo que optimice la asignación de la demanda de reservas, maximizando las ganancias y estandarizando el proceso para fortalecer la capacidad de respuesta y la relación con los proveedores.

OBJETIVO GENERAL

Asegurar la asignación de al menos un 95% de las reservas de transporte y aumentar el margen de beneficio en un 10% mediante el diseño de un modelo de asignación de flota y la estandarización del proceso de gestión de proveedores de transporte, completándolo con la verificación del prototipo.

PROPUESTA

Modelo de optimización para la asignación de flota terrestre

Función Objetivo (máx. ganancia de transporte terrestre)

$$Max.\sum_{k\in K}(V_k+VS_kE_k-\sum_{i\in I}(C_{i,k}+E_{i,k}*S_{i,k})X_{i,k}-\sum_{j\in J}(C_{j,k}+E_{j,k}*S_{j,k})X_{j,k})$$
 Sujeto a:

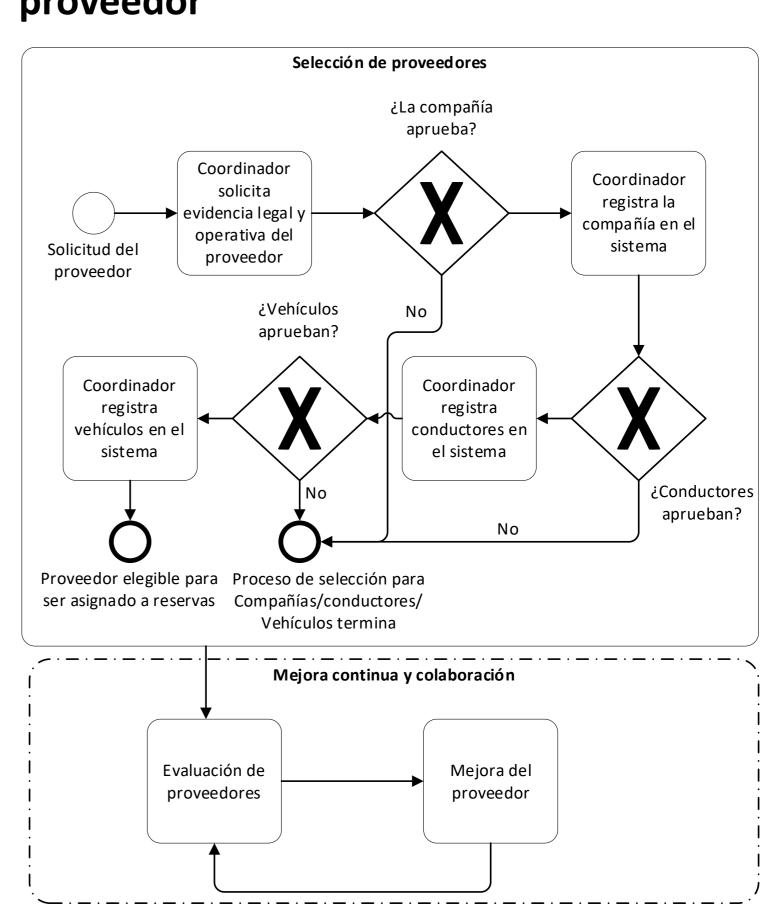
$$\sum_{i \in I} X_{i,k} + \sum_{j \in J} X_{j,k} = 1 \quad \forall k$$

Cada reserva de transporte debe ser asignada a un solo conductor propio o particular

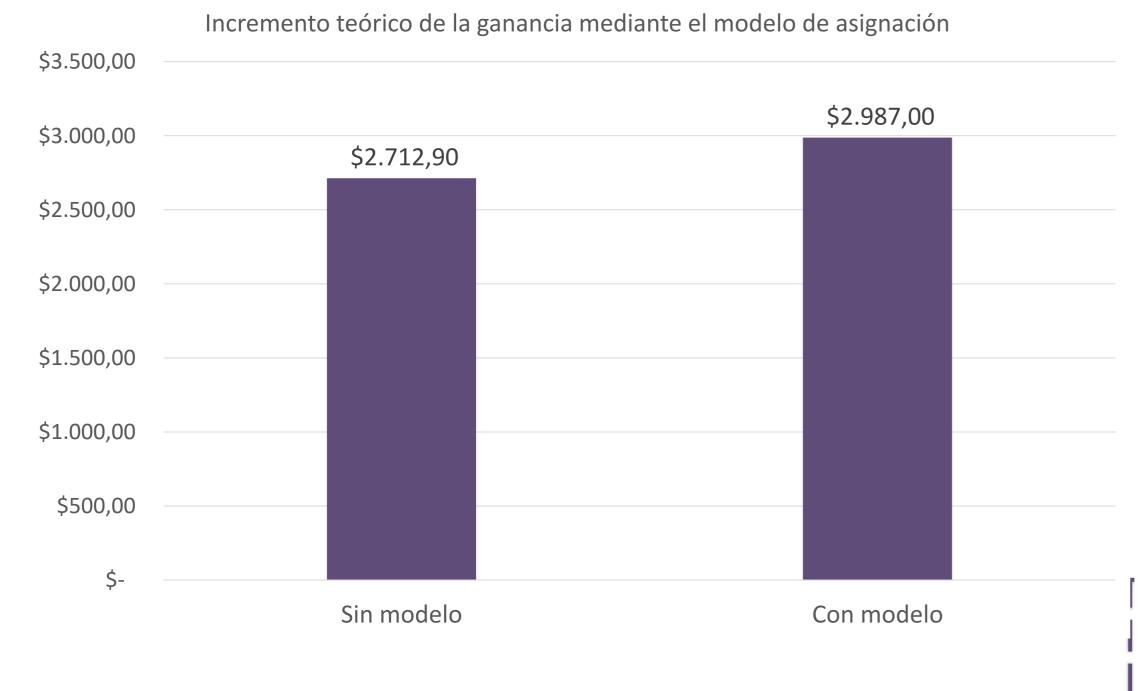
$$\sum_{k \in K} X_{i,k} \le 1 \quad \forall i \in I$$

$$\sum_{k \in K} X_{j,k} \le 1 \quad \forall j \in J$$

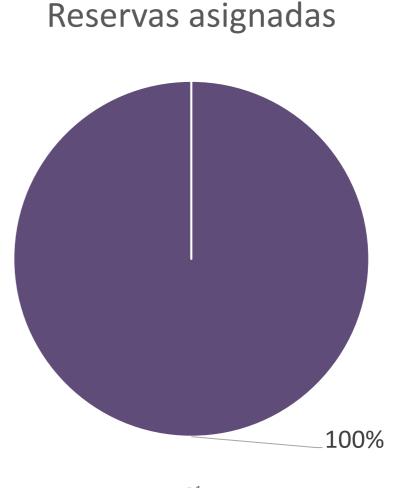
Un transportista puede ser asignado solo a una reserva


 $X_{i,k} \in \{0,1\} \ \forall i \in I, k \in K$ $X_{i,k} \in \{0,1\} \ \forall j \in J, k \in K$

Variables Binarias


 $X_{i,k} \le A_{i,k} \ \forall i \in I, k \in K$ $X_{j,k} \le A_{j,k} \ \forall j \in J, k \in K$

Disponibilidad de transportistas para ser asignados a la reserva


Proceso de manejo de relación con el proveedor

RESULTADOS

El algoritmo posee la restricción de que todas las reservas deben ser asignadas

for k in range(len(K)):

model += pulp.lpSum(X_ik[:, k]) + pulp.lpSum(X_jk[:, k])
== 1

CONCLUSIONES

- El modelo cumple con el 100% de cobertura de la demanda de flota terrestre.
- En la muestra tratada se evidenció el incremento del 10,13% de la ganancia de transporte terrestre.
- Le luso del modelo de asignación pretende reducir al menos 24% del tiempo disponible de la operación.
- La relación con los proveedores y la adopción de nuevas tecnologías impulsan la implementación de guías de transporte digitales (cero papeles) y optimizan la disponibilidad de transportistas.

