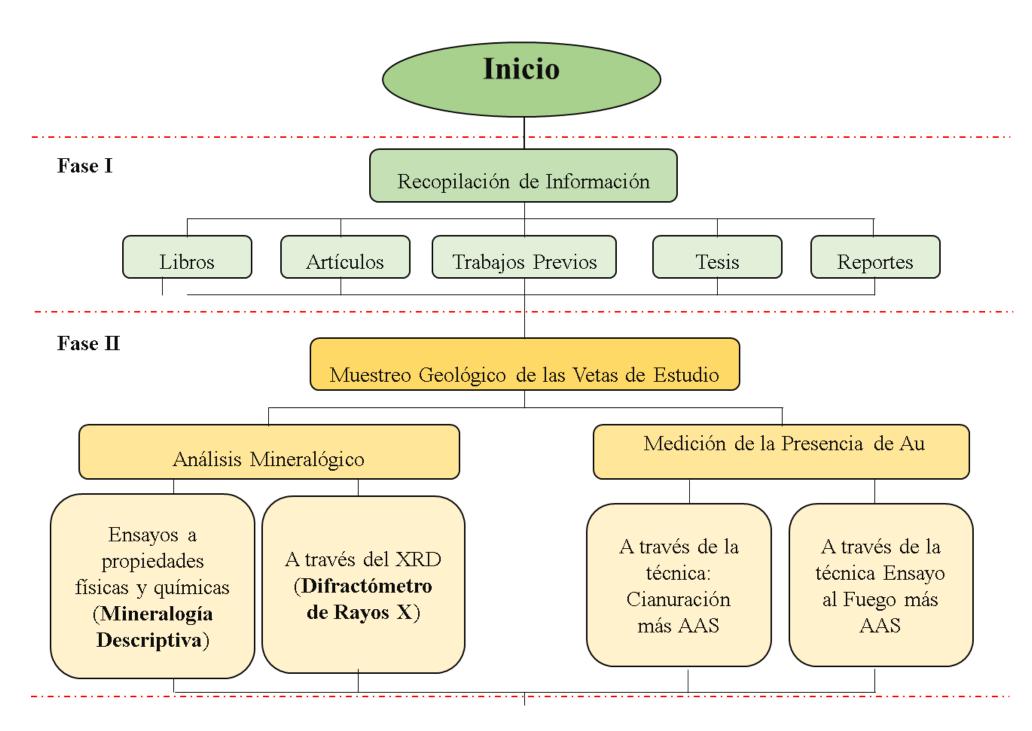


Implementación de técnica eficiente como guía para la exploración de Au

PROBLEMA

El agotamiento paulatino de recursos naturales no renovables de alta ley mineral y bajo tonelaje representa un peligro para las personas y/o empresas que se dedican a la industria minera. La reducción de estos recursos provoca una mayor inversión en los costos de exploración y es probable que si las técnicas de búsqueda no son eficientes genere grandes pérdidas económicas.


OBJETIVO GENERAL

Identificar ensambles mineralógicos como guías de exploración a través del análisis descriptivo y semicuantitativos de las 18 muestras tomadas en las vetas

Fig. 1 Ubicación de la zona de estudio. Fuente: Autor.

METODOLOGÍA

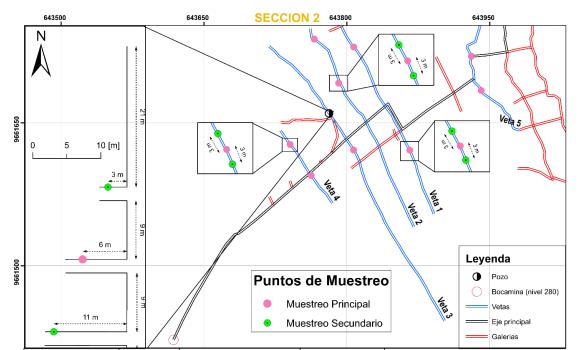


Fig. 2 Ubicación de Muestreos. Fuente: Autor.

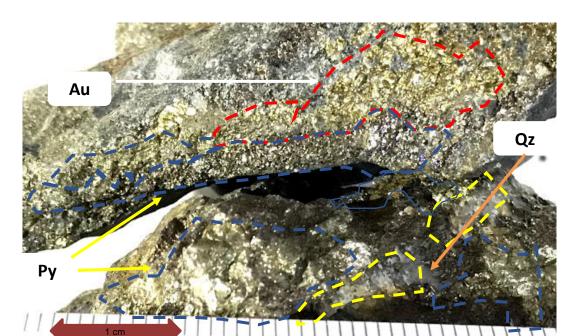


Fig.3 Mineralogía descriptiva. Fuente: Autor.

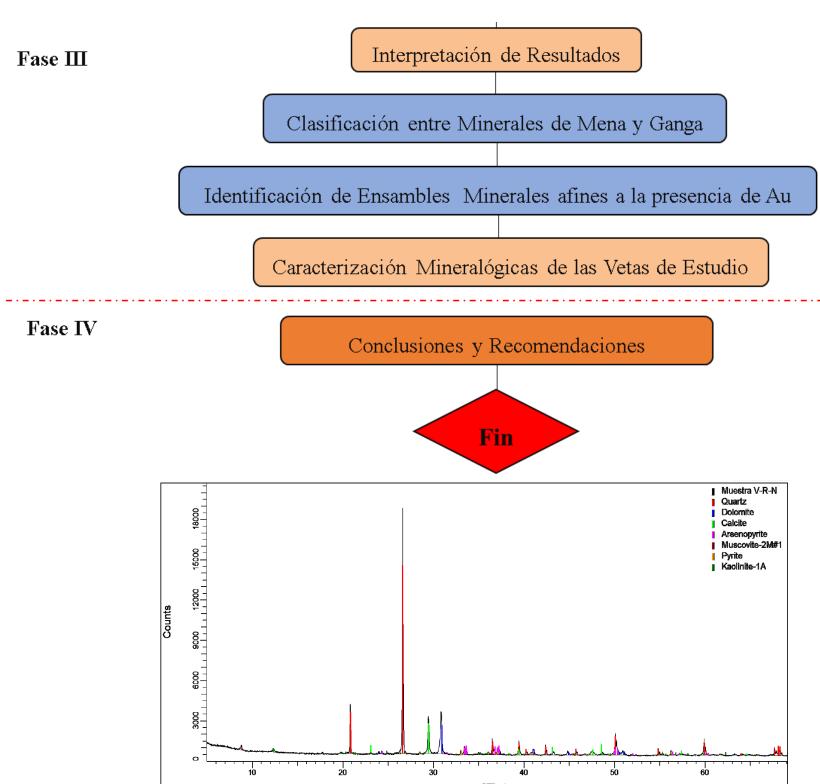


Fig.4 Minerales identificados por Difractometría. Fuente: Autor.

Fig. 6 Ensayo al Fuego. Fuente: Autor.

Fig. 5 Ensayo de Cianuración. Fuente: Autor.

RESULTADOS

Ensambles Minerales			Con	centració	n de Au	Pre	Presencia de Mineral				
Mir	nerales Primar	ios		>	5g/T		SI				
Mir	Minerales Secundarios										
Mir	Minerales Guias			<	5g/T		NO				
	LD = Mineral identificado cuya cuantificación está por debajo del 1%.										
			Fig	. 7 Leye	enda						
					Mineralogia Descriptiva						
			Veta 1	Veta 2	Veta 3	Veta 4	Veta 5				
	M	Pirita									
	'n	Pirrotita									
	e r	Arsenopi	irita								
	a Cuarzo										
	e s	Calcita									

Fig. 9 Resumen de Minerales Identificados por Mineralogía Descriptiva.

		Analisis de XRD									
		Veta 1	% aproximado	Veta 2	7. aproximado	Veta 3	% aproximado	Veta 4	% aproximado	Veta 5	% aproximado
	Pirita		18,7		10,2		16,7		13		LD
	Pirrotita		14,2		4		6,2		36,75		0
м	Calcopirita		0,5		0		0,75		1,3		0
IVI	Cuarzo		38		58		38,5		39		59
1 _	Arsenopirita		0		0		0		0		7,5
n	Calcita		10		4,7		7,2		0		9,5
e	Dolomita		0		0		0		0		20
г	Marcasita		2,2		0		0		0		0
а	Yeso		0		0		LD		0		0
I	Rutilo		0		0		LD		0		0
l e	Actinolita		0		0,5		0		LD		0
5	Andesina		0		4		0		1,7		0
3	Clinocloro		10		10,7		7,2		0		0
	Laumontita		0		0,5		0		0		0
	Estilbita		0		2,2		0		0		0
	Heulandita		0		LD		0		0		0

Fig. 8. Minerales Identificados por el XRD.

		Ensamble Mineralogíco										
		Veta 1	% promedio aproximado	Veta 2	% promedio aproximado	Veta 3	% promedio aproximado	Veta 4	% promedio aproximado	Veta 5	% promedio aproximado	
м	Muscovita		5		3,7		11,7		LD		1,5	
	Cuarzo		38		58		38,5		39		59	
i	Actinolita		0		0,5		0		LD		0	
n	Andesina		0		4		Û		1,7		0	
e	Clinocloro		10		10,7		7,2		0		0	
	Laumontita		0		0,5		0		0		0	
	Estilbita		0		2,2		0		0		0	
	Heulandita		0		LD		0		0		0	
	Calcita		10		4,7		7,2		0		9,5	
e	Pirita		18,7		10,2		16,7		13		LD	
5	Pirrotita		14,2		4		6,2		36,75		0	
	Arsenopirita		0		0		0		0		7,5	
	Dolomita		0		0		0		0		20	
Presencia	Cianuracion											
de Au	Ensayo al Fuego											

Fig. 10. Ensambles Minerales Identificados de cada una de las Vetas Analizadas.

CONCLUSIONES

- Se distinguen 3 ensambles mineralógicos definidos como Primarios, Secundarios o de Alteración y de Mena o Guías a la presencia de oro, siendo las especies que compone a este ultimo ensamble propias de depósitos hidrotermales
- La ausencia de Pirrotina en la veta 5 y la presencia de Arsenopirita y Dolomita indica un pulso de mineralización distinto definido como Epitermal contrario al de las vetas 1,2,3,4 definido como Mesotermal

BIBLIOGRAFÍA

