

OBJETIV©S
DE DESARROLLO
SOSTENIRI E

La ESPOL promueve los Objetivos de Desarrollo Sostenible

Elaboración de una bio-briqueta de carbón vegetal mediante el reaprovechamiento de los desechos de una planta de extracción de agua de coco.

PROBLEMA

Una plantación cocotera de la variedad *Cocos Nucífera L.* genera residuos de cáscara de coco como resultado de la cosecha y procesamiento artesanal del fruto. Esto produce una acumulación significativa que presenta desafíos debido a su volumen y su lenta degradación natural. Tienen previsto una expansión en su producción, lo que incrementará la generación de este residuo hasta 300 Tn/año, aproximadamente.

OBJETIVO GENERAL

Evaluar la factibilidad técnica y ambiental de producir biobriquetas de carbón vegetal para el reaprovechamiento del residuo de cáscaras generado por una planta de extracción de agua de coco.

PROPUESTA

Adaptar el proceso a escala de laboratorio para la elaboración de prototipos de briqueta mediante variaciones en la formulación. Posteriormente, realizar caracterizaciones para verificar el cumplimiento de la normativa EN 1860-2:2023. Seleccionar el prototipo con mejor desempeño para evaluar el impacto ambiental y los costos en la producción de 100 kg/h bio-briquetas.

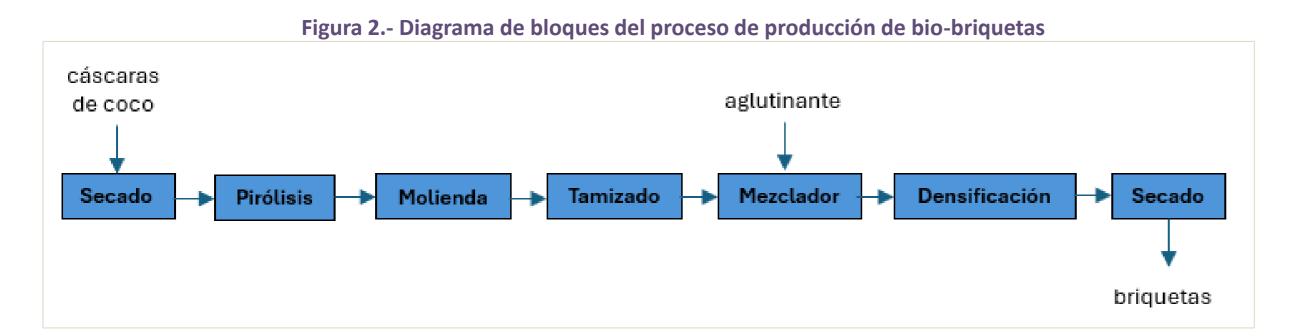
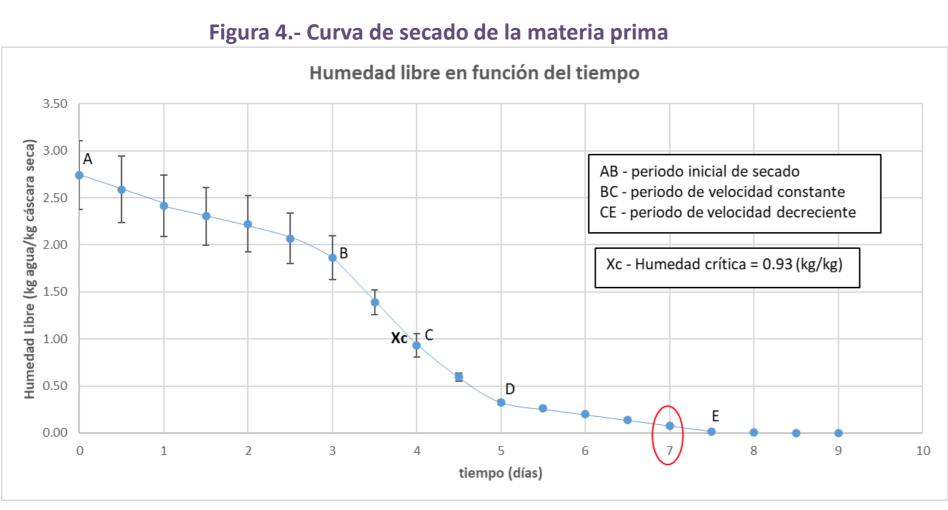



Tabla 1.- Requisitos de las briquetas de uso en barbacoa según EN 1860-2:2023

carbono fijo	>60%		
cenizas	<18%		
humedad	<8%		
granulometría	Ninguna sección debe ser		
	menor a 20mm.		
aglutinante	De grado alimenticio		

RESULTADOS

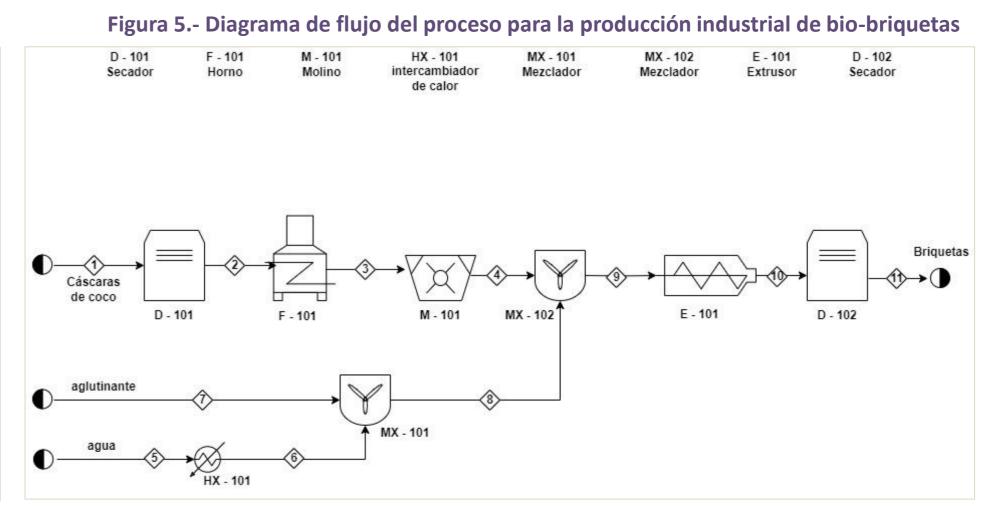


Tabla 2.- Resultado de las caracterizaciones a los prototipos

Prototipo	humedad	Carbono	cenizas	Poder calorífico
		fijo		(MJ/kg)
#1 (5% harina de yuca)	3%	84%	11%	28.7
#2 (10% harina de yuca)	3%	71%	15%	20.5
#3 (5% harina de maíz)	3%	80%	12%	24.2
# 4 (10% harina de maíz)	3%	72%	16%	26.1
EN 1860-2:2023	<8%	>60%	<18%	-
(Anis et al, 2024)	6%	72%	3%	30.06

Tabla 3.- Resultado de indicadores de rentabilidad

Tiempo de retorno (años)

TIR (%) VAN (Millones) Precio de venta retorno (años)

100 kg/h
Briquetas de Coco

2,5 años 26,72% 14,89 \$8,84/kg

CONCLUSIONES

- El tiempo óptimo de secado de las cáscaras es 7 días.
- El rendimiento de la pirólisis de este residuo es del 35%.
- El uso de harina de yuca y harina de maíz en concentraciones del 5% y 10% en la producción de biobriquetas de carbón de coco garantiza el cumplimiento de la normativa EN 1860-2:2023.
- Aunque todos los prototipos cumplen con la normativa, el 5% de harina de yuca produce una briqueta con mejor poder calorífico, pero ligeramente inferior al reportado en la literatura.
- El proyecto de 100 kg/h de briquetas presenta un VAN de 14.9 millones de dólares, TIR del 26.72%, retorno en 2.5 años. El precio de venta es de 8.84 dólares/kg.

