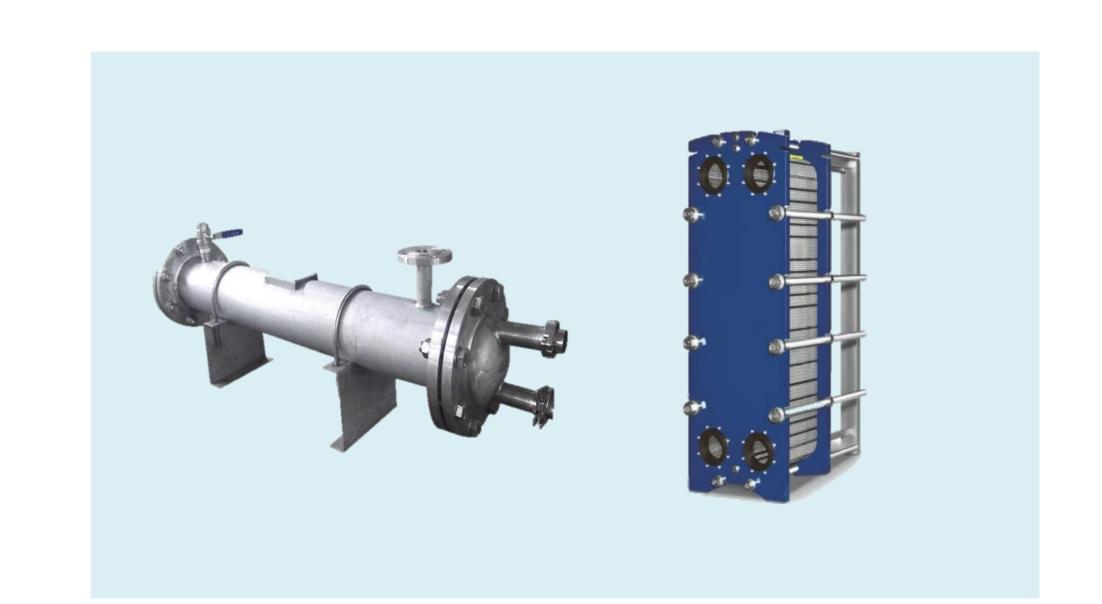


La ESPOL promueve los Objetivos de Desarrollo Sostenible

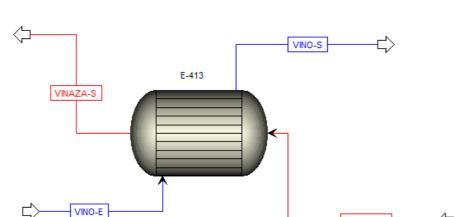

Diseño de un intercambiador de placas Vino-Vinaza, para el ahorro energético en una planta de alcohol etílico

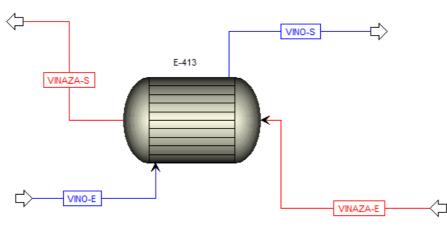
PROBLEMA

En la producción de alcohol etílico, la destilación demanda grandes cantidades de vapor. El intercambiador de calor de tubo y carcasa utilizado en la planta presenta baja eficiencia en el calentamiento de la alimentación a la columna, lo que resulta en un aumento en el consumo de vapor y, consecuentemente, en los costos operativos.

OBJETIVO GENERAL

Mejorar la eficiencia del intercambiador Vino-Vinaza de una planta destiladora de alcohol mediante el rediseño del sistema de intercambio de calor para la reducción del consumo energético.

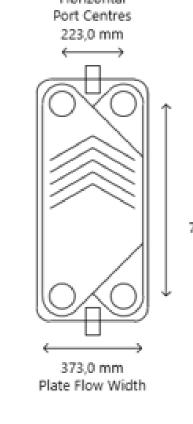



PROPUESTA

Se recopiló información operativa de la planta de destilación, evaluando el desempeño del intercambiador de calor actual. A través de simulaciones y análisis termodinámicos, se comparó el diseño de tubo y carcasa con una propuesta de intercambiador de placas, con el fin de identificar mejoras en eficiencia energética.

Uso del software Aspen Plus para verificar el funcionamiento del intercambiador de tubo y carcasa de la planta.

Cálculos del nuevo diseño Análisis económico Interpretación de


resultados

METODOLOGÍA

Recolección de datos

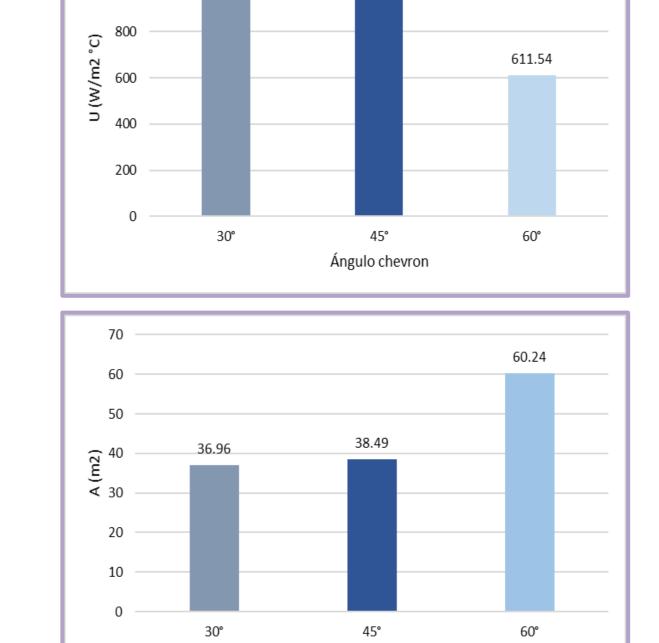
Verificación del proceso

actual

Aplicación de ecuaciones termodinámicas y balances de energía en la determinación del área requerida para mejorar la eficiencia del sistema de intercambio de calor.

1200

1000


Evaluación del ahorro en vapor y combustible, junto con el costo del nuevo intercambiador, basado en información obtenida de proveedores en línea.

RESULTADOS

Mayor rendimiento térmico con ángulo de chevron de 30°

Alto coeficiente global de transferencia de calor

Menor área de intercambio

Ángulo de chevron

957.14

Parámetro	Tipo de intercambiador de calor			
	Tubo y carcasa		Placas	
	Vino	Vinaza	Vino	Vinaza
Temperatura entrada (°C)	30	79	30	79
Temperatura salida (°C)	40	66	60	53
Calor transferido (kW)	265		797	
Área (m²)	26.4		36.9	

Presupuesto estimado en \$11388

Reducción consumo de vapor a la mitad

Ahorro en combustible de \$52583 por zafra

CONCLUSIONES

- La implementación del nuevo diseño con placas corrugadas tipo chevron, demuestra que es posible incrementar la temperatura de salida del vino de 40°C a 60°C, mejorando el proceso de transferencia térmica.
- Desde el punto de vista económico, el nuevo diseño del intercambiador de calor representa una inversión eficiente al lograr una reducción del consumo de vapor cercana al 50%. Este ahorro energético se traduce en una disminución significativa en los costos operativos, estimada en \$52,583 USD por zafra.

RECOMENDACIONES

- Analizar el diseño de placas con diferentes configuraciones de ángulos o patrones de corrugación que permitan mejorar la eficiencia térmica.
- Realizar un análisis más detallado de los costos asociados al mantenimiento del nuevo intercambiador de placas, para tener una proyección económica más completa.

