

La ESPOL promueve los Objetivos de Desarrollo Sostenible

xSVM_ctx: Librería de Código Abierto para Obtener Predicciones Contextualizadas

PROBLEMA

Las Máquinas de Vectores de Soporte (SVM) son modelos de inteligencia artificial (IA) usados para resolver problemas de clasificación de datos. Estos modelos pueden ser complejos de interpretar en ámbitos donde, además de la clasificación, se requiere conocer el porqué. Si bien existe un modelo que provee explicaciones por contexto, y cuya arquitectura promueve la paralelización (Loor et al., 2023), su acceso era limitado.

OBJETIVO GENERAL

Desarrollar una librería de código abierto que implemente las funcionalidades de SVMs contextualizados para facilitar el acceso a explicaciones de las clasificaciones realizadas por estos modelos.

PROPUESTA

- Se implementaron las funcionalidades de una SVM contextualizada (Loor et al., 2023) para procesar los datos de cada contexto durante el entrenamiento y predicción de forma paralela.
- xSVM_ctx es una librería de código abierto que permite a los usuarios generar explicaciones de las clasificaciones realizadas por un modelo SVM contextualizado.

xSVM_ctx

- Se documentó las funcionalidades de la librería para facilitar su comprensión y uso.
- Se desarrolló una interfaz amigable que permite explotar las funcionalidades de xSVM_ctx.

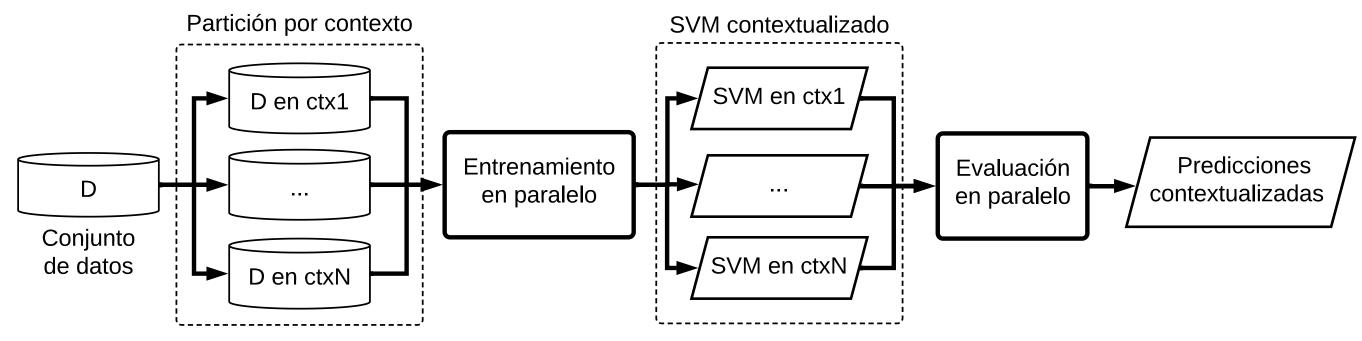


Ilustración basada en la arquitectura propuesta por Loor et al. (2023).

Métricas de evaluación

RESULTADOS

- El uso de esta librería permitió reducciones en los tiempos de entrenamiento de hasta más de 1 hora.
- También se consiguió reducciones de hasta un 80% en los tiempos de clasificación.
- El uso de esta librería mejoró la precisión y exactitud hasta un
 10% en múltiples datasets en comparación al SVM no contextualizado.

	Tiempo de entrenamiento						1h 22m 53s						18s			
	Tiempo de clasificación							0m 9s				3m 50s				
	Precisión y Exactitud						8	38,9%				97,9%				
hand at rest	0.899	0.027	0.019	0.017	0.028	0.008	0.001		hand at rest	0.980	0.007	0.005	0.002	0.004	0.002	0.000
hand clenched	0.029	0.902	0.025	0.009	0.013	0.021	0.000		hand clenched	0.006	0.982	0.005	0.001	0.002	0.003	0.000
wrist flexion	0.022	0.031	0.899	0.004	0.010	0.033	0.001		wrist flexion	0.005	0.006	0.979	0.001	0.002	0.007	0.000
wrist extension	0.025	0.016	0.006	0.893	0.042	0.017	0.001	True label	wrist extension	0.004	0.004	0.002	0.979	0.008	0.004	0.000
radial deviations	0.038	0.022	0.015	0.055	0.861	0.007	0.001	ra	adial deviations	0.007	0.006	0.004	0.008	0.974	0.002	0.000
ulnar deviations	0.015	0.029	0.046	0.019	0.007	0.883	0.002	u	ılnar deviations	0.004	0.006	0.008	0.003	0.001	0.978	0.001
extended palm	0.017	0.029	0.029	0.019	0.014	0.079	0.814		extended palm	0.006	0.006	0.006	0.002	0.001	0.009	0.971
	hand at rest	hand clenched	wrist flexion	wrist extension	radial deviations	ulnar deviations	extended palm		l	hand at rest	hand clenched	wrist flexion	redicted lab	⊕ radial deviations	ulnar deviations	extended palm

SVM

CONCLUSIONES

- Se desarrolló una librería de código abierto para que investigadores y practicantes puedan entrenar modelos SVM contextualizados que proporcionan explicaciones sobre las clasificaciones realizadas.
- La paralelización del modelo facilita el uso de un mayor volumen de datos de entrenamiento.
- La contextualización del modelo implementado conllevó a una mejora en la exactitud de las predicciones.

REFERENCIAS

 Loor, M., Tapia-Rosero, A., & De Tré, G. (2023). Contextual Boosting to Explainable SVM Classification. In Conference of the European Society for Fuzzy Logic and Technology (pp. 480-491). Springer Nature Switzerland.

