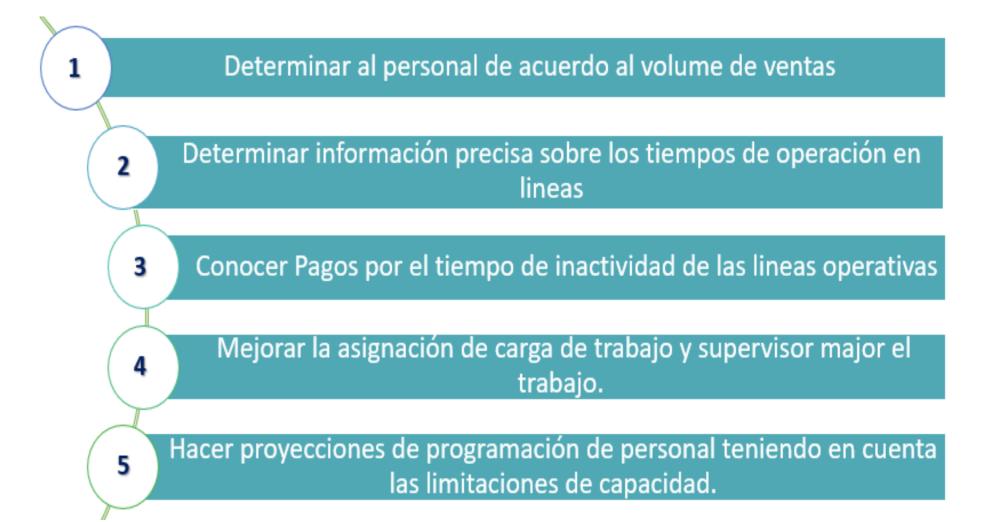


MODELO PARA PLANIFICACIÓN DE PERSONAL EN UNA EMPRESA EMPACADORA DE CAMARÓN


OPORTUNIDAD

La empresa necesita un modelo matemático que le permita optimizar el nivel de mano de obra requerido para empacar en base arribos de pesca diarias.

OBJETIVO GENERAL

Diseñar un modelo de planificación que permita controlar la disponibilidad y rendimiento de mano de obra por medio de indicadores.

Necesidades

Parámetros

 C_{ik} : Costo de tener un empleado trabajando por turnos j en la máquina k.

 CE_{ik} : Costo adicional tener un empleado trabajando en turno normal j

en la máquina k.

 CO_{ik} : Costo de oportunidad de mantener el tiempo detenido trabajando turno

, Si el turno j está incluido en el día i y en la máquina k 0, De otra manera

 x_{ik} : Número de empleados en el turno j máquina k.

 w_{jk} : Horas de paradas no programadas en el turno j

 u_{ik} : Cantidad de libras de camarón en el turno j

 y_{ik} : Horas extra en el turno j máquina k.

 r_k : Nivel requerido de trabajadores en la máquina k.

 V_k : Velocidad nominal de la máquina k.

j en la máquina k.

PROPUESTA

1 Requerimientos de diseño

Eficacia

Carga Laboral

Eficiencia Rendimiento

Tiempo de procesamiento <= 30 seg/cajas.

Horas extraordinarias a un nivel máximo del 25%.

Tiempos de parada no programados <= 100 minutos por máquina y

turno.

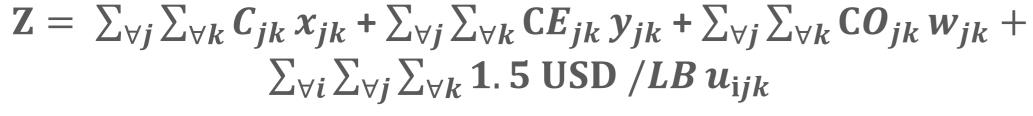
Carga de trabajo por turno de >= 100 libras por empleado

Desarrollo del Modelo

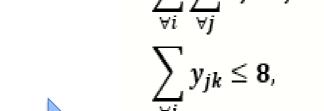
Conjuntos e índices

Indices

I: Conjunto que representa el horizonte de planificación, sus elementos (días) son indexados por i.


J: Conjunto de turnos de trabajo disponibles indexados por j.

K: Conjunto de máquinas indexados por k.


Función objetivo

Variables de decisión

Minimizar z = Costo de mano de Obra T. Regular+ Costo de Mano de Ora en horas extra+ Costo Paradas No programada + Costo de adquisición de Materia Prima.

Restricciones

máquina k.

máquina k.

 $\sum u_{ijk} \le Demand_{ik}; \quad \forall i, \forall k \rightarrow La \ restricción \ de \ capacidad \ no \ excede \ la \ demanda$

m4

27

0.45

0.55

TOTAL

132

 W_{jk}

RESULTADOS

3

13% Optimizar la planificación de actividades diaria en un 5%

1.8 1.5 1.5 1.5 1.6 1.6 2.1 1.5 1.85 1.65 1.9 1.7 1.9 1.6 1.81 1.58 **PROMEDIO** VAR% -13%

SITUACION ACTUAL (h) SITUACION MEJORADA (h)

40% Reducir el impacto porcentual de litro – consumo, diario de

la planta

CURRENT SITUATION (It/month) IMPROVED SITUATION (It/mont 22 15 25 16 23 15 26 15 27 14 25 16 25 13 PROM 24.71 14.86 -40% VAR%

13% Reducción del 10% en costo de mano de obra en jornada de turno por mes

	SITUACION ACTUAL (h)	SITUACION MEJORADA (h)
PROMEDIO	1.81	1.58
Costo/día (\$)	\$68.18	
Costo/hora (\$)	\$6.82	
Mes (días)	22	
Costo/mes (\$)	\$39.76	\$34.73
VAR%		-13%

Z= COSTO TOTAL (MANO DE OBRA + COSTO SOBRETIEMPO + **COSTO DE PARADA)**

\$ 78,478.70

33

0.30

t1

TURNO

39

 X_{jk} **TURNO** 39 27 **NÚMERO DE HORAS DE SOBRETIEMPO** MÁQUINA **TOTAL** Y_{jk} **TURNO NÚMERO DE HORAS DE PARADA** MÁQUINA **TOTAL** m4

NÚMERO DE OBREROS POR TURNO-MÁQUINA

MÁQUINA

33

		DEMANDA EN MILES DE LIBRAS MÁQUINA				
		m1	m2	m3	m4	
DÍA	d1	50	60	60	40	
	d2	50	50	50	40	
	d3	60	60	50	40	
	d4	60	70	60	50	
	d5	70	50	50	60	
	d6	90	60	70	60	
	47	CO	CO	Ε0	40	

CONCLUSIONES

- El modelo cumple con las especificaciones técnicas planteadas al principio del proyecto en una prueba realizada con proyecciones en periodos de aguaje y quiebra.
- Se logro reducir las horas de planificación del personal diaria en un 13%.
- Con el modelo utilizado se pudo calcular el número de personal óptimo para su debida asignación a los turnos y máquinas de acuerdo al total libras de pesca diaria.
- Se logro estimar el mínimo costo total de mano de obra.