

La ESPOL promueve los Objetivos de Desarrollo Sostenible

Desarrollo de un sistema robótico heterogéneo con coordinación entre un robot terrestre y aéreo.

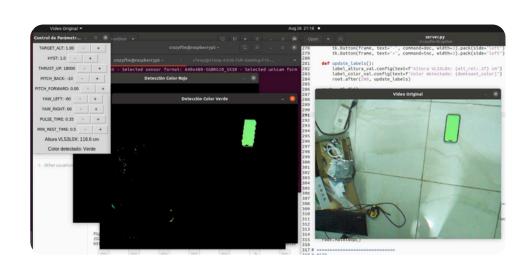
PROBLEMA

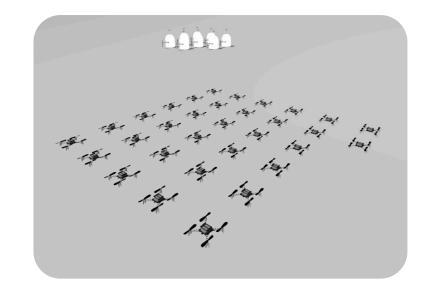
A pesar de los avances en robótica, la coordinación entre robots aéreos y terrestres sigue siendo limitada, especialmente en contextos educativos. La falta de investigación en este campo limita el desarrollo de algoritmos y estrategias de comunicación y control que permitan a estos robots trabajar de manera conjunta, restringiendo el aprendizaje práctico en sistemas colaborativos heterogéneos.

OBJETIVO GENERAL

Desarrollar un sistema robótico heterogéneo entre un robot aéreo y un robot terrestre, mediante simulación y experimentación en entornos controlados, con el fin de evaluar el comportamiento coordinado.

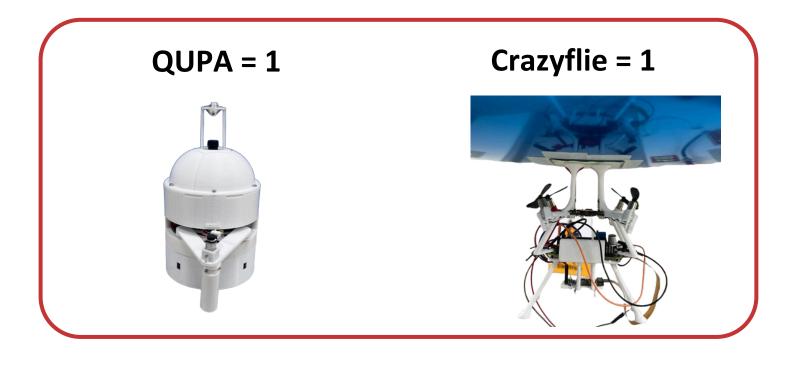
PROPUESTA




Comunicación visual

Validación en simulación ROS2

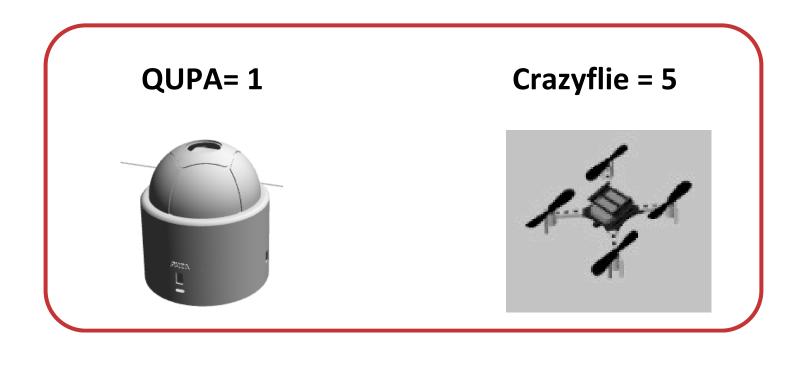
Validación física en laboratorio


RESULTADOS

Implementación física

Tiempo promedio de reacción, alcance visual efectivo y velocidad

0.78 s 116 cm 0.52 rad/s


0.82 85 cm 0.80 rad/s 0.80 s 101 cm 0.12 m/s

Simulación

Tasa de éxito con diferentes tamaños de enjambre

Simulación	Tamaño	Éxitos	Fallos	Tasa Éxito	Error Promedio
1	2	2	0	100%	0.18m
2	3	3	0	100%	0.39m
3	4	4	0	100%	0.30m
4	5	5	0	100%	0.30m
5	6	5	1	83.3%	0.49m
6	7	6	1	85.7%	0.49m
7	8	3	5	37.5%	2.42m

Tamaño Óptimo

≤5

robots por enjambre

Error Promedio

1.19m

Desv. Est: 1.89m

Tasa de Éxito Global

77.4%

24/31 robots exitosos

CONCLUSIONES

- El sistema robótico aire—tierra basado en estímulos visuales demostró ser funcional, económico y replicable, lo que lo hace adecuado para contextos educativos.
- En la implementación física, el tiempo de reacción del dron ante estímulos fue inferior a 1 segundo, con un alcance visual efectivo de hasta 116 cm.
- La simulación en ROS2 + Gazebo permitió validar trayectorias simples y escalar hasta 5 drones con un solo QUPA, destacando efectividad en la tarea de los líderes y variabilidad en el rendimiento de los seguidores.

