

La ESPOL promueve los Objetivos de Desarrollo Sostenible

DE NEUMÁTICOS A ACEITE: NYLON RESIDUAL CONVERTIDO EN ADIPATO DE DIMETILO

PROBLEMA

Anualmente Ecuador desecha 4 millones de neumáticos, convirtiéndolos en una fuente de contaminación ambiental debido a su compleja composición. En particular, el nylon 6,6, una fibra textil altamente resistente, es incinerado, liberando gases tóxicos y de efecto invernadero. Este proyecto plantea una solución sostenible: transformar este residuo en adipato de dimetilo, un compuesto de alto valor, promoviendo así la economía circular y reduciendo el impacto ambiental.

OBJETIVO GENERAL

Diseñar un proceso conceptual para la obtención de adipato de dimetilo a partir de nylon residual mediante reacciones de despolimerización y esterificación para su escalabilidad usando el software Aspen Batch Process Developer.

PROPUESTA

Diseñar un proceso conceptual para la obtención de adipato de dimetilo a partir de nylon residual

Revisión bibliográfica

Investigación

sobre reacción

esterificación.

Diseño de experimentos

Estudio de la influencia de las variables independientes.

Experimentación nivel laboratorio

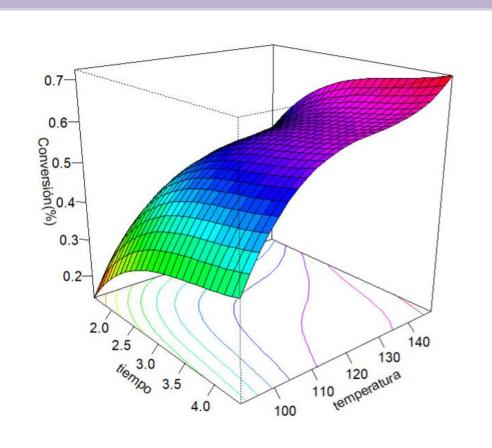
Recolección de datos. Simulación computacional

Diseño y
 proyección a
 varias escalas.

Evaluación Tecnoeconómica

> Viabilidad del proceso.

RESULTADOS


Condiciones ideales que maximizan la conversión

Parámetro	Valor
Temperatura	129.62 °C
Tiempo	3.42 horas
Conversión teórica	61.45 %

Propiedades físicas del adipato de dimetilo

Propiedades	Unidad	Valor teórico	Valor experimental	Porcentaje de error (%)
Punto de ebullición	°C	215-225	217	1.83
Índice de refracción	-	1.4283	1.4058	2.22

Superficie de respuesta

Simulación ABPD

je s	Recipe: Laboratorio (1.0) Recipe: 200 kg (1) Recipe: Intensificación (1)		
1.	Disolución		
	Charge ST-D with 7795997.96 ml of WATER		
	Charge ST-D with 3971545,07 ml of HCL37 % Dissolve the following components 100% of HYDROGEN-CHLORIDE.		
	Read in unit ST-D wald solution. Reading occurs over 3 min. The final temperature of the batch is 25 C. The final pressure in the unit is 1 atm. Dissolve the following components: 100% of HYDROGEN-CHLORIDE.		
	Transfer contents of unit ST-D to RE-400. Transfer 100% of vessel contents. The transfer time is 5 min.		
2.	Despolimerización		
2.1.	Charge RE: 400 with 294189, 19 g of nylon residual. Charge RE: 400 with 102968, 14 g of ZeoliteM.		
2.2.	React in unit RE-400 via Depolimerización. Reaction occurs over 6 h. The final temperature of the batch is 160 C. The final pressure in the unit is 3 atm.		
2.3.	3. Coolunit RE-400 to 20 C. The cooling time is 1 h.		
3.	Esterificación		
3.1.	Charge RE-400 with 2941885.34 ml of METHANOL		
3.2.	React in unit RE-400 via Startication. Reaction occurs over 3 h. The final temperature of the batch is 140 C. The final pressure in the unit is 3 atm.		
3.3.	Cool unit RE-400 to 20 C. The cooling time is 1 h.		
3.4.	React in unit RE-400 via displucion 2. Reaction occurs over 5 min. The final temperature of the batch is 25 C. The final pressure in the unit is 1 atm.		
	Filtración		
4.1.	Filter the batch from unit RE-400 in filter FI-100. The transfer filme of the sturry is 30 min. Transfer 100% of the batch to the filter. The mother liquor is sent to ST-E. The filter separates 100% of all solids.		
42.	Wash the cake in unit FH00. For each wash, use 14/0942,69 ml of WATER. Spent Wash Stream: The stream is sent to Tank SET. Transfer contents of unit FH000 to V203. The transfer time is 5 min. The transfer stream belongs to category Organic Waste.		
5	Evaporación metanol		
	Distill continuously the minture from unit ST-E in unit Column CPC. Separation is: 98% of METHANOL goes to Overhead. Unspecified materials go to Bottoms. The bottoms pressure is 26.66 kPa. The bottoms temperature is 40.C. The overhead condenser Condenser HE-14. The outlet temperature of the condenser is 21.C. The pressure is maintained at 26.66 kPa. The process utilizes vacuum pump Conveyor C101. Distillate Sheam. The distillate is sent to STORAGE METHANOL Bottoms Stream. The bottoms stream is named BOTTOMS 1.		
6.	Extracción L-L		
5.1.	Continuously decant the material from Column CPC in DE-100. Separation is: 96% of DIMETHYL-ADIPATE goes to Top and 99% of DIETHYL-ETHER goes to Top. Unspecified materials go to Bottom. The top layer is sent to ST TOP. Continuously add DIETHYL-ETHER at a rate of 1735, 16 (layf). Continuously add WATER at a rate of 2612,77 (layf).		
7.	Destilación Dietil Eter		
7.1.	Distill continuously the miniture from unit STTOP in unit Column DE. Separation is: 98% of DIMETHYL-ADIPATE goes to Bottoms and 98% of DIETHYL-ETHER goes to Overhead. Unspecified materials go to Bottoms. The bottoms pressure is 1 atm. The better temperature is 50 C. The overhead condenser is Condenser is Condenser in Condense in Condenser in Condenser in Condenser in Condenser in Condense in Condenser in Condense		
	Evaporación HCI		

Índices económicos

PBP(años)	6.35
CCR	2.08
ССР	942.33
ROIROI(%)	17%

CONCLUSIONES

- Se diseñó un proceso conceptual para la obtención de adipato de dimetilo a partir de nylon residual, integrando despolimerización y esterificación. Utilizando Aspen Batch Process Developer, se optimizó el flujo de trabajo y se validaron los balances de masa y energía, estableciendo las bases para la escalabilidad industrial y destacando su viabilidad técnica y ambiental.
- El modelo cúbico identificó las condiciones óptimas para la esterificación del ácido adípico, con una temperatura de 129.62 °C y un tiempo de 3.42 horas, logrando una conversión teórica máxima del 61.45%. Estos resultados destacan parámetros clave para maximizar la eficiencia y asegurar su escalabilidad a mayor escala.
- La simulación del proceso en Aspen Batch Process Developer permitió identificar puntos críticos y superar limitaciones operativas, integrando modelado y experimentación. Esto confirmó la viabilidad técnica y estableció un marco sólido para implementar una solución sostenible y de alto impacto en la valorización de residuos.
- La evaluación tecno-económica mostró la viabilidad industrial del proceso con un período de recuperación de 6.35 años, una razón de costos a retorno de 2.08, un costo total de producción de 942.33 USD y un ROI del 17%. Estos indicadores destacan el potencial del proceso como una alternativa económicamente sostenible y ambientalmente responsable.

