

DISEÑO E IMPLEMENTACION DE PROTOTIPO DE UN VEHÍCULO DE ENTREGA DE PAQUETES CON OPERACIÓN AUTÓNOMA SOLAR.

PROBLEMA

Es evidente que la industria de entregas enfrentar retos significativos en las áreas de transporte, distribución y almacenamiento. Rutas ineficientes y falta de optimización en el transporte de mercancías generan tiempos de entrega prolongados y altos costos operativos.

OBJETIVO GENERAL

Diseñar y poner en funcionamiento un robot móvil autónomo con navegación social, que se encargue de entrega de paquetes.

PROPUESTA

Una propuesta de vehículos autonomos con geolocalizacion busca abordar estos problemas y transformar la logística, mejorando la eficiencia, la sostenibilidad y la experiencia del cliente. Esta tecnología de geolocalización avanzada permitirá optimizar rutas y los tiempos de entrega. Este vehículo autónomo es impulsado por energía solar, lo que lo hace respetuoso con el medio ambiente y reduce las emisiones de carbono. La geolocalización nos permitirá brindar a los clientes información en tiempo real sobre el estado de su entrega. Nuestra propuesta ofrece una solución integral que combina tecnología de punta en robótica y geolocalización con un enfoque sostenible y respetuoso con el medio ambiente, para ofrecer una capacidad técnica avanzada y una experiencia de entrega excepcional para el sector retail y entrega a domicilio.

METODOLOGÍA

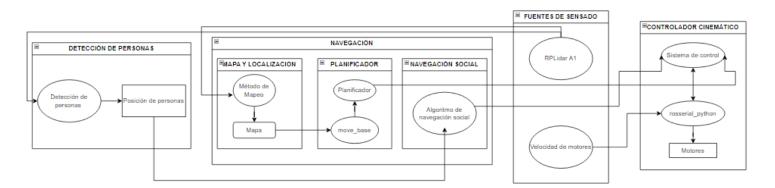


Figura 1.- Diagrama de todos los nodos y algoritmos implementados

RESULTADOS

- Se obtuvo por simulación que el torque desarrollado cuando arranca el motor del robot a velocidad máxima fue de 20 cm/s, como se observa en la figura 2.
- Se observo en la figura 3 la trayectoria tomada por el robot al momento de detectar la silueta del mapa, definiendo los bordes de las paredes, así mismo como detectando y esquivando los obstáculos frente de él.
- Se determino los parámetros de carga, mediante el controlador solar, se observa que la carga completa se realiza en un tiempo de 8 am a 12 pm.

Figura 2. – Grafico de parámetros del controlador solar.

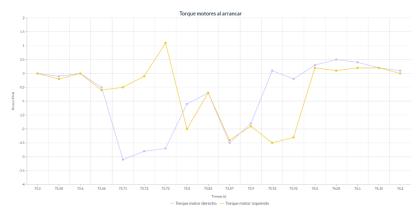


Figura 2.- Grafico de torque de los motores del robot.

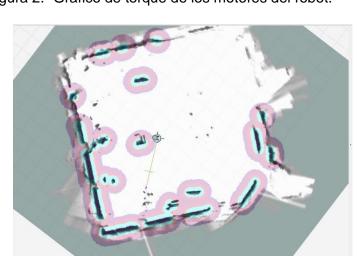


Figura 3.- Mapeo y movimiento del robot del punto A al B

CONCLUSIONES

Se logró la implementación de un prototipo de robot de navegación autónoma solar con el cual se probaron varios paquetes de ROS, y posteriormente se escogieron los que funcionaban con el hardware del proyecto, lo cual demostró la capacidad autónoma de navegación y su capacidad de un peso máximo de 30 libras. El sistema de carga con el controlador solar nos dio resultados de carga completa para la batería de los motores en 4 horas. Al final el robot pudo ser armado y probado con éxito.