

ANÁLISIS DE LAS DIFERENTES TÉCNICAS DE EXTRACCIÓN DE AZADIRACTINA Y SU ENFOQUE COMO COMPONENTE ACTIVO EN BIOPESTICIDAS AGRÍCOLAS

PROBLEMA

El uso de insecticidas químicos para la prevención y control de plagas representa la principal alternativa elegida en comunidades agrícolas. A largo plazo esta opción, sumado a la falta de conocimiento en Buenas Prácticas Agrícolas (BPA) afecta la sostenibilidad de sus modelos productivos y ambientales.

OBJETIVO GENERAI

Detectar la presencia de azadiractina en el fruto de la especie vegetal *Azadirachta indica A. Juss* mediante el análisis químico cualitativo de extractos polares, para su proyección como componente activo en bioplaguicidas.

Ilustración 1 Uso de insecticidas en cultivos

Ilustración 2 Especie vegetal Azadirachta indica A. Juss

Ilustración 3 Espectrofotómetro UV-Visible

PROPUESTA

Se Implementaron dos estrategias de secado natural para los frutos de Neem (aire libre y prototipo de secador solar). Se utilizó agua como solvente, para la extracción del componente activo (azadiractina) presente en los frutos, considerándose las condiciones de operatividad en campo (extracción por maceración) y acceso a tecnologías (extracción asistida por ultrasonido) de los productores. Para evaluar todo lo mencionado, se realizó un análisis cualitativo instrumental sobre los espectros de absorción de los extractos acuosos obtenidos mediante barridos de longitudes de onda en un espectrofotómetro UV-Visible. Los resultados sobre la detección de azadiractina se analizaron en el software estadístico IBM SPSS®.

DescripciónObservacionesVariables
Independientes1) Relación masa/solvente (g/mL)Se presenta en el método de extracción "maceración"
Se presenta en el método de extracción "sonicación"2) Tiempo de sonicaciónSe presenta en el método de extracción "sonicación"Variable Independiente 11) 20g/200mLSe presenta en el método de

Tabla 1 Diseño experimental de la investigación

2) Tiempo de sonicación

Variable Independiente 1

Variable Independiente 2

Variable

Variable

Perfiles de absorbancia

Variable

dependiente

Se presenta en el método de extracción "maceración"

Se presenta en el método de extracción "sonicación"

Cualitativa. Observar pico en 211 – 217 nm para azadiractina

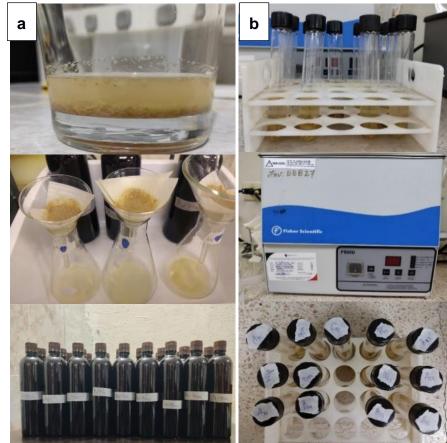


Ilustración 4 Estrategias de secado: a) Secado de la muestra A al aire libre y b) Secado de la muestra B en prototipo

Ilustración 5 Procesos de extracción:
a) Extracción por maceración y b) Extracción por sonicación

RESULTADOS

Tabla 2 Porcentajes de humedad y diámetros de partículas de las muestras A y B transcurrido un periodo de 18 días de secado

Descripción	Secado al aire libre	Secado en prototipo
% Humedad (%W)	30.1	32.04
D ₈₀ (mm)	1.774	1.502

Tabla 3 Resultados de probabilidad y valores pronosticados obtenidos por el Software SPSS

	Software St SS					
	Muestra	%w	Método de extracción	Probabilidad	Grupo	
IVIU	iviuestia	estra /ow		Pronosticada	Pronosticado	
	A11	30.10	Maceración R1:20g/200mL	0.2751	No se detecta AZA	
	B11	32.04	Maceración R1:20g/200mL	0.3915	No se detecta AZA	
	A12	30.10	Maceración R2: 30g/200mL	0.7972	Detecta AZA	
	B12	32.04	Maceración R2: 30g/200mL	0.8695	Detecta AZA	
	A13	30.10	Sonicación 20 min	0.7972	Detecta AZA	
	B13	32.04	Sonicación 20 min	0.8695	Detecta AZA	
	A14	30.10	Sonicación 30 min	0.7972	Detecta AZA	
	B14	32.04	Sonicación 30 min	0.8695	Detecta AZA	
	B13 A14	32.04 30.10	Sonicación 20 min Sonicación 30 min	0.8695 0.7972	Detecta AZA Detecta AZA	

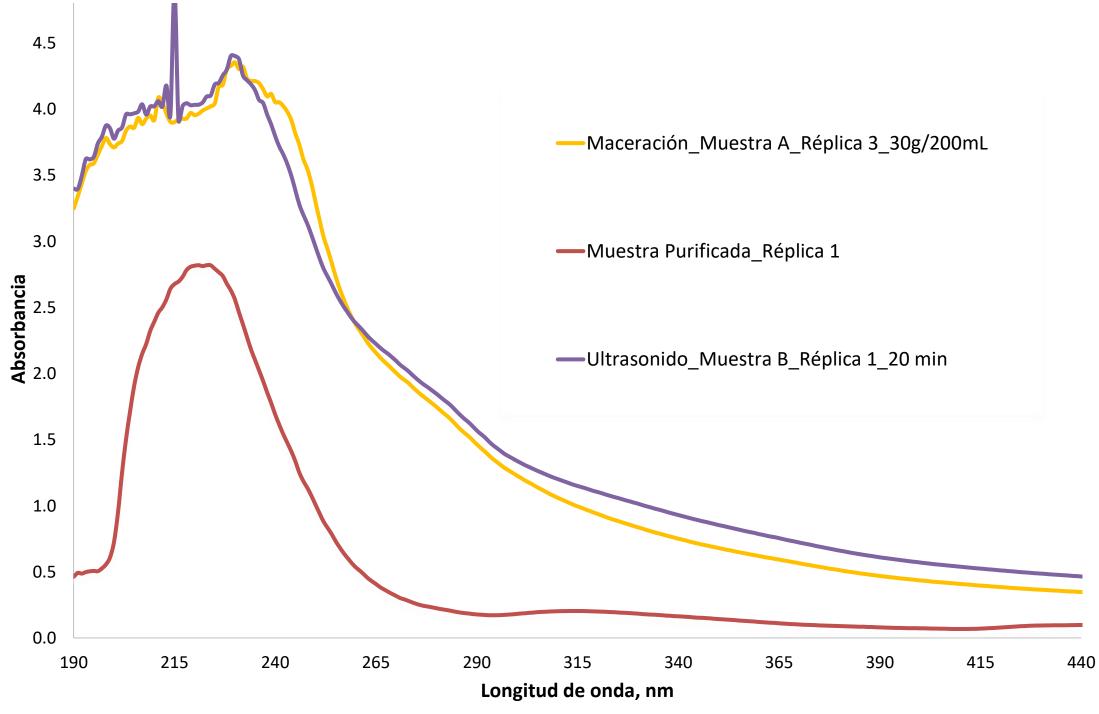


Ilustración 6 Espectros UV – Vis de las mejores muestras en maceración y ultrasonido vs muestra purificada

CONCLUSIONES

- ✓ Se propone usar un secador solar para obtener muestras con menor diámetro de partícula (1.502 mm) y favorecer la extracción del componente activo.
- ✓ De un total de 24 muestras de extractos acuosos analizados cualitativamente por espectrofotometría UV-Visible, 17 muestras permitieron detectar la presencia de azadiractina en el fruto de Neem a una longitud de onda de 211nm.
- ✓ De las 17 muestras, los mejores espectros pertenecen a los extractos acuosos obtenidos por sonicación a un tiempo de 20 minutos y por maceración a una relación de 30g / 200mL.
- ✓ El modelo de regresión logística binaria predice la detección del compuesto activo con una probabilidad del 87% para muestras secadas en un prototipo y extraídas mediante los procesos de maceración (30g: 200mL) y sonicación (20 min y 30 min).