

ANÁLISIS ENERGÉTICO DEL SISTEMA DE REFRIGERACIÓN DEL PROCESO DE LIOFILIZACIÓN EN LA PLANTA DE PROCESAMIENTO DE CAFÉ SOLUBLE

PROBLEMA

El secado por liofilización consume gran cantidad de electricidad debido al sistema de refrigeración que se encuentra dentro de éste. Se estima que gasta 50% más de energía eléctrica frente a otros tipos de secado, lo que repercute en el costo final del producto.

OBJETIVO GENERAL

Incrementar la eficiencia energética del sistema de refrigeración por compresión de doble etapa del proceso de liofilización mediante el análisis energético para la propuesta de rediseño de la planta.

Figura 1: Sistema de refrigeración industrial Obtenido de: asesoriaycapacitacionempresarial.mx

PROPUESTA

La implementación del análisis energético y mejoras propuestas se realizaron siguiendo la metodología descrita en la Figura 2.

Las mejoras realizadas son un ciclo de compresión con absorción y un ciclo en cascada. Con cada propuesta se calculó su eficiencia en el software EES donde se obtuvieron los balances de materia y energía, luego la simulación en el Proll y finalmente un análisis económico basado en el costo eléctrico de los compresores.

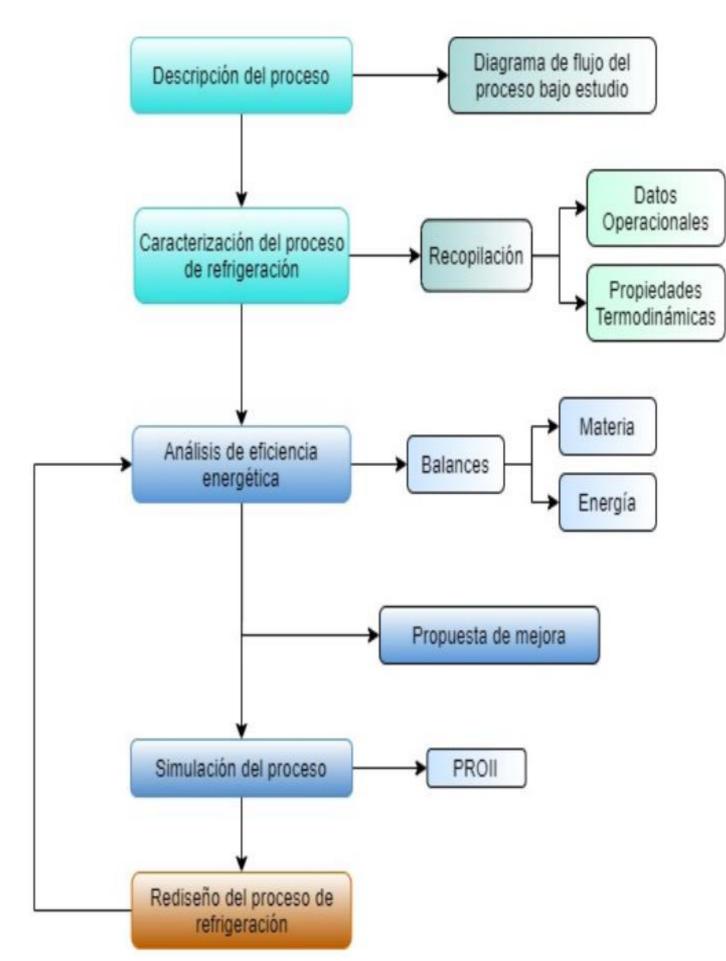


Figura 2. Metodología del análisis energético

RESULTADOS

El análisis energético muestra resultados para el COP para el caso base y las mejoras 1 y 2 (ciclo de absorción y ciclo en cascada respectivamente) como se puede observar en la Figura 4.

En términos económicos, el coste por consumo de electricidad proveniente de los compresores disminuye de \$13000 por mes hasta \$5600 y \$4000 mensuales.

Figura 3. Costo Eléctrico por mes del caso base y las mejoras.

Fuente: Autor.

CONCLUSIONES

- Las propuestas planteadas fueron un sistema de absorción y un sistema en cascada con el fin de reducir el costo eléctrico, optimizar el COP y que la inversión sea baja.
- La simulación del caso base y mejoras fueron desarrolladas en el software ProII mientras que los balances de materia y energía fueron desarrollados en el EES.

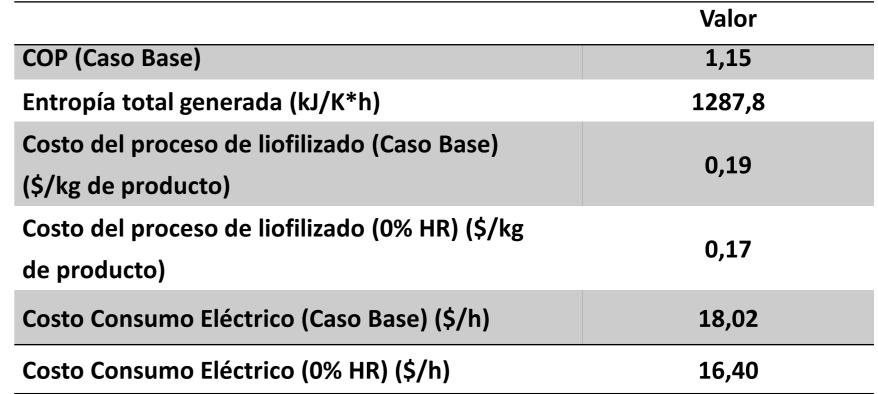


Tabla 1. Resultados del caso base

Figura 4. Coeficiente de desempeño (COP) del caso base y las mejoras. Fuente: Autor.

- Se calcularon valores de COP para los casos analizados obteniéndose una mejora del COP de entre el 26 y 48 % dependiendo de la propuesta implementada.
- El costo eléctrico se reduce en más del 50% con las mejoras dadas teniendo en cuenta el costo por el uso de compresores con una inversión baja.