

Determinación de la estabilidad de soluciones valoradas e indicadores empleados para el control de calidad de la industria farmacéutica mediante valoraciones complexométricas y tratamiento estadístico.

PROBLEMA

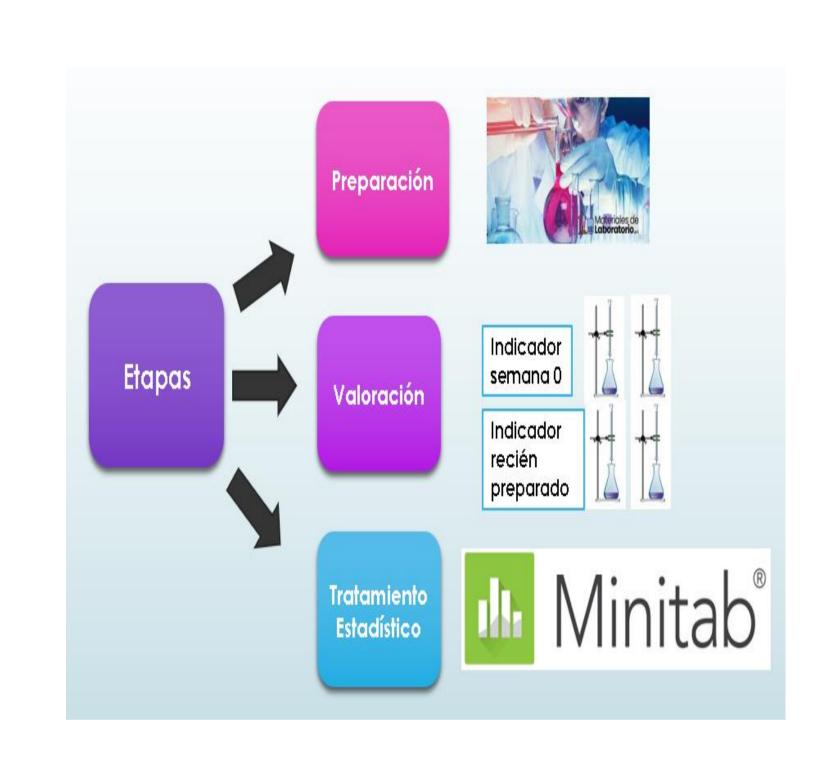
La industria farmacéutica basa sus metodologías en las monografías de la US Pharmacopeia, esta determina que las soluciones preparadas y sus indicadores deben desecharse en un lapso no mayor a una semana y 24 horas respectivamente; aún cuando se utiliza un pequeño porcentaje de toda su preparación.

En Ecuador, no hay un estudio que respalde y evidencie el tiempo real que las soluciones permanecen estables bajo condiciones óptimas de almacenamiento.

OBJETIVO GENERAL

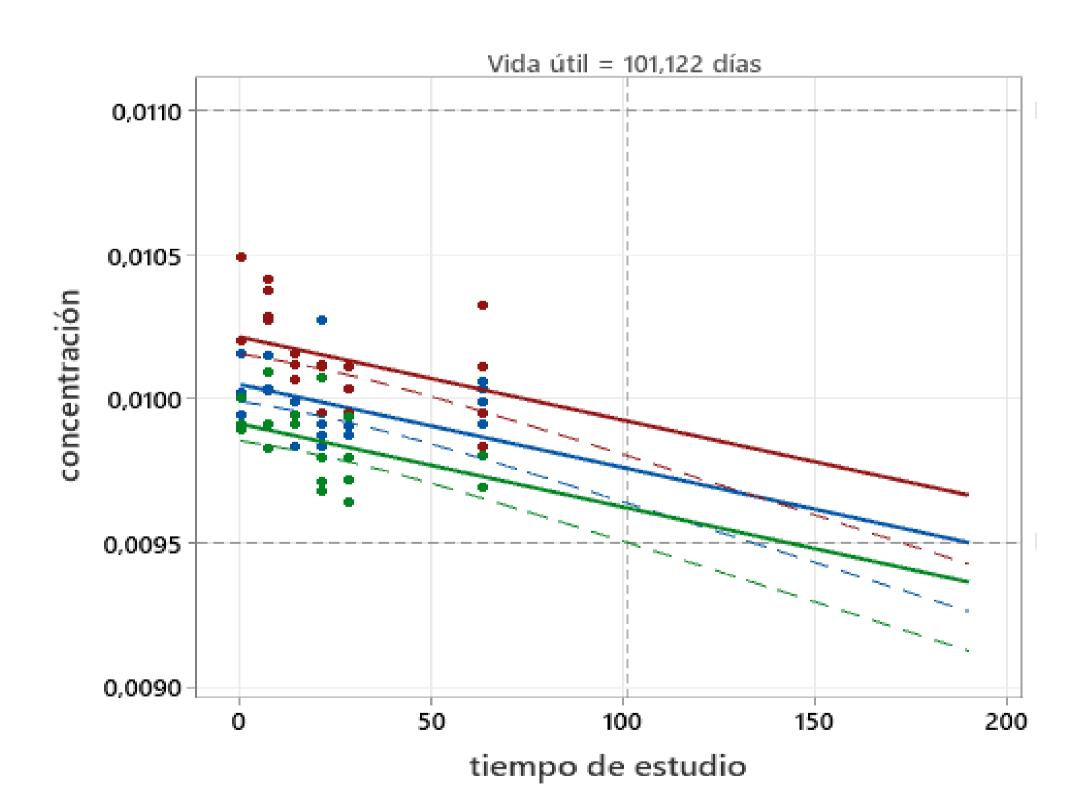
Evaluar la estabilidad química de las soluciones estándar y sus indicadores durante un periodo de tiempo definido para su implementación en controles de calidad de los principios activos en la industria farmacéutica.

PROPUESTA


Para el presente caso, evaluaremos la estabilidad de 14 soluciones a través de un estudio de degradación de la concentración en un periodo de 3 meses en base a dos factores:

- Tiempo de almacenamiento
- Tipo de indicador

El proyecto se divide en 3 etapas:


- Preparación y determinación de concentración inicial de las soluciones
- Valoración periódica por triplicado y duplicado de las soluciones.
- Tratamiento estadístico de datos mediante el software Minitab

Finalmente, se compararán los valores obtenidos por la proyección de un tiempo de vida útil de las soluciones y se obtendrá el porcentaje de degradación de cada solución durante 3 meses para corroborar que esté dentro del rango máximo permisible del 10%, según la US Pharmacopeia.

Metodología para la determinación de la estabilidad de las soluciones valoradas.

RESULTADOS

Proyección en Minitab del tiempo de vida de una muestra de Hidróxido de Sodio 0,01 N tomada de 3 lotes diferente

Solución Valorada	Vida útil promedio (días)
Tiosulfato de Sodio 0,01 N	Estable
Tiosulfato de Sodio 0,1 N	326,562
Hidróxido de Sodio 0,01 N	101,122
Hidróxido de Sodio 0,02 N	Estable
Hidróxido de Sodio 0,05 N	Estable
Hidróxido de Sodio 0,1 N	Estable
Hidróxido de Sodio 1 N	Estable
Ácido Clorhídrico 0,01 N	Estable
Ácido Clorhídrico 0,1 N	Estable
Ácido Clorhídrico 0,5 N	Estable
Ácido Clorhídrico 1 N	Estable
Ácido Clorhídrico 2 N	Estable
EDTA 0,05 M	105,574
Sulfato de Zinc 0,05 M	Estable

Tabla de vida útil promedio y estabilidad de las 14 soluciones

	1
Solución Valorada	Degradación promedio (%)
Tiosulfato de Sodio 0,01 N	1,34
Tiosulfato de Sodio 0,1 N	1,14
Hidróxido de Sodio 0,01 N	2,15
Hidróxido de Sodio 0,02 N	0,69
Hidróxido de Sodio 0,05 N	1,15
Hidróxido de Sodio 0,1 N	1,26
Hidróxido de Sodio 1 N	0,28
Ácido Clorhídrico 0,01 N	1,60
Ácido Clorhídrico 0,1 N	0,87
Ácido Clorhídrico 0,5 N	1,72
Ácido Clorhídrico 1 N	0,93
Ácido Clorhídrico 2 N	0,78
EDTA 0,05 M	0,48
Sulfato de Zinc 0,05 M	1,41

Tabla de degradación de las 14 soluciones en un periodo de 3 meses

CONCLUSIONES

- ✓ Mantener un ambiente controlado de temperatura, humedad y presión favorecen a la preservación de los indicadores y las soluciones de tiosulfato de sodio, hidróxido de sodio, ácido clorhídrico, EDTA, sulfato de zinc y otras sustancias con características similares ya que bajo estas condiciones se pudo demostrar mediante volumetría que estas se mantienen químicamente estables durante un periodo de 3 meses.
- ✓ En el presente trabajo, se determinó el % de degradación de las soluciones valoradas con el transcurso del tiempo con proyección de la vida útil; dejando un precedente para futuros estudios.
- ✓ En el ámbito económico, se obtiene disminución de costos de materia prima y beneficio de la productividad de los analistas ya que contarán con soluciones listas para su uso.