Implementación de un algoritmo para la gestión de la carga de vehículos eléctricos en función de la demanda de redes eléctricas

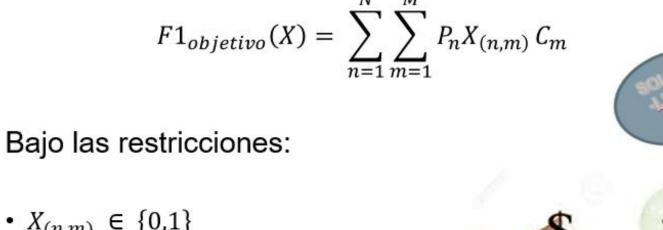
PROBLEMA

Con la llegada de los vehículos eléctricos al mercado automovilístico, su incremento será considerable, con esto, surge el problema de cómo administrar la carga de este medio para ser descargado a la red eléctrica, tal gestión debe encontrarse en función de la curva de demanda diaria para evitar alterarla de manera negativa y conllevará un estudio preliminar para ejecución del proyecto por parte de las empresas distribuidoras.

OBJETIVO GENERAL

Diseñar una estrategia de control de demanda para la indemnización de la carga/descarga de los vehículos eléctricos en función del consumo optimizando los recursos, mediante la atenuación de la curva para la reducción de la demanda pico.

PROPUESTA

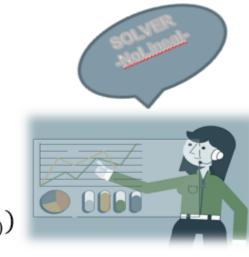

Se propone plantear un modelo para el gestionamiento de la demanda y se llevará a cabo bajo una propuesta matemática realizada para optimizar a las funciones objetivos plasmadas, de modo que se busque beneficiar a la empresa distribuidora de energía, a los propietarios de VE y estacionamientos. Para que ejecute tanto el control estratégico que permite el accionamiento de las recargas o descargas de los autos hacia la red; se ha implementan dos ecuaciones que inciden primordialmente tanto para: (a) maximizar las ganancias por la venta de la descarga de energía de un automóvil en horarios asignados y (b) disminuir el pico de la demanda que podría sufrir la red eléctrico en ciertos horarios, es decir, que distribuya de manera cronológica y balanceada a los diferentes cargadores para que gesticulen su tiempo de operatividad alrededor de las 24 horas.

Consideraciones:

- Las 24 horas en intervalos de "M"
- Vector de costos referencial eléctrico: mercado $C_m = [C_1, C_2, C_3, ..., C_{M-1}, C_M]^T_{M \times 1}$
- Los "N" cargadores instalados en estación permitirán considerar las Bajo las restricciones: potencias de los automóviles: $P_n = [P_1, P_2, P_3, ..., P_{N-1}, P_N]_{1\times N}$
- La matriz X(N,M) binaria, donde 1 equivale a un vehículo conectado a la red en tal horario, y 0 significa que el auto no se encuentra en $P_{max} \forall m \geq \sum_{n=1}^{N} P_n X_{(n,m)} \geq 0$ conexión con la red en el tiempo plasmado: $X_{(n,m)}=$. $m_{1,(n)}^{max}\geq m_{1,(n)}\geq m_{1,(n)}^{min}\geq 0$

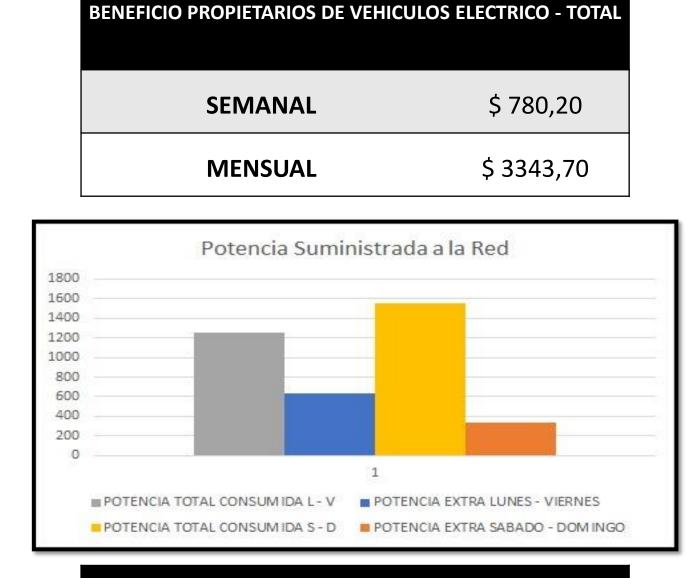
$$\begin{bmatrix} 0 & m_{1,(1)} & xL_{1-2} & m_{1,(1)} + L_1 & 0 \\ \vdots & \ddots & \vdots & \\ 0 & m_{1,(N)} & xL_{N-2} & m_{1,(N)} + L_N & 0 \end{bmatrix}$$

Maximizar las ganancias por la venta de la energía descargada de un automóvil en horarios asignados


- $X_{(n,m)} \in \{0,1\}$
- $P_{max} \forall m \geq \sum_{n=1}^{N} P_n X_{(n,m)} \geq 0$
- $m_{1,(n)}^{max} \ge m_{1,(n)} \ge m_{1,(n)}^{min} \ge 0$
- $SOC_{max} \geq SOC \geq SOC_{min}$

Minimizar la sobrecarga que podría sufrir la red eléctrica en horarios de picos de demanda mediante la carga de vehículos eléctricos

$$F2_{objetivo}(X) = \frac{max_m(\sum_{n=1}^{N} P_n X_{(n,m)})}{\sum_{m=1}^{M} \sum_{n=1}^{N} P_n X_{(n,m)} / M}$$


- $X_{(n,m)} \in \{0,1\}$

- $\sum_{n=1}^{N} \sum_{m=1}^{M} P_n X_{(n,m)} \ge \min_{\forall n} (\sum_{n=1}^{N} \sum_{m=1}^{M} P_n X_{(n,m)})$

RESULTADOS

BENEFICIOS

CONCLUSIONES

- Se ha podido implementar una estrategia de demanda que permitirá administrar las cargas y descargas de los vehículos, posibilitando que la curva de carga diaria se altere de manera positiva para la empresa distribuidora, adicionalmente se ha logrado incentivar a cada uno de nuestros actores del proyecto mediante beneficios económicos que tentarán a su participación.
- La estrategia puede ser aplicada tanto en mercados regulados y en desregulados permitiendo mayores índices de estabilidad y confiabilidad del sistema, reduciendo pérdidas por sobrecargas en subestaciones de distribución.
- El método permite aprovechar al máximo los distintos cargadores de diferentes velocidades presentes en la estación de carga/descarga: cuando hay picos y valles de carga, la descarga y recarga respectivamente ocurre con VE que suministran mayor cantidad de energía con cargadores de alta velocidad, en las horas restantes operan los cargadores de velocidad media y baja para garantizar se pueda no saturar y/o perjudicar la red.
 - Todos los usuarios y propietarios de VE participantes, obtendrán como ganancia mínima la carga total de los vehículos al 100%. Sin gastar algún valor adicional a su presupuesto (es necesario que participen en el proyecto).