

DISEÑO Y CONSTRUCCIÓN DE UN SECADOR LECHO FLUIDIZADO PARA LABORATORIO

PROBLEMA

En la carrera de ingeniería de alimentos se requiere un secador de lecho fluidizado para realizar sus experimentos; sin embargo dichos equipos a nivel de laboratorio son costosos en el mercado nacional; por lo cual solicitaron a la carrera de ingeniería mecánica el diseño y construcción de un secador de lecho fluidizado que cumpla con sus requerimientos tantos técnicos como económicos.

Imagen 1.- Frutas después de ser secadas

OBJETIVO GENERAL

Construir un secador de lecho fluidizado a escala de laboratorio para el análisis de consumo energético y pruebas de secado con la finalidad de utilizarlo en el laboratorio de ingeniería en alimentos

PROPUESTA

Se propone un diseño con una entrada de aire lateral y una transición rectangular donde ira la resistencia. Una placa agujereada para que el flujo que pase a través del producto alimenticio sea laminar. Tendrá una bandeja para colocar los 2kg de fruta, el cuerpo de la zona de secado tendrá una compuerta de fácil acceso para colocar y retirar el producto. Al final de la estructura del secador se diseña un extractor para que se pueda liberar el aire caliente.

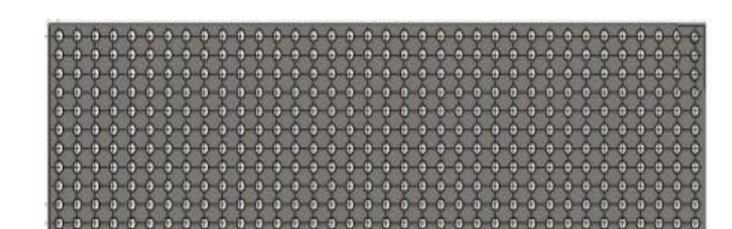


Ilustración 2.- Placa agujereada de 8mm

Ilustración 3.-Resistencia Tubular aletada tipo "M" -2000W

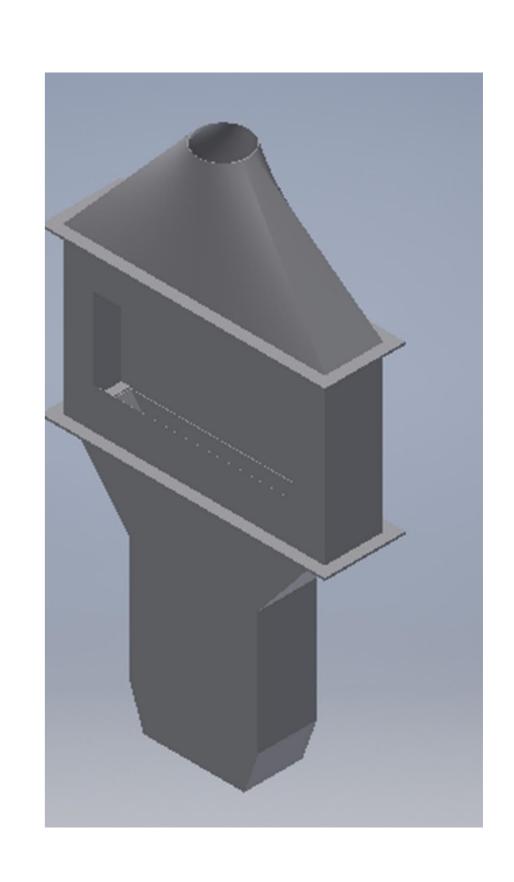


Ilustración 4.- Diseño de secador de lecho fluidizado

RESULTADOS

Tabla 1.- Ficha técnica

Dato	Símbolo	Valores	Unidades
Peso de una rodaja de banana	W Banano	0,0286	kg
Peso total de producto a secar	W total	2	kg
Área de la plancha agujereada	A plancha agujereada	0,094	m^2
Área del agujero de la plancha	$A_{agujero}$	50.26	mm
Diámetro del agujero de la plancha	dagujero	8	mm
Número de agujeros en la plancha	n_T	396	-
Coeficiente de arrastre del banano	Cd	1,15	-
Temperatura	Т	50	°C
Densidad del aire a 50°C	ρ	1,092	Kg/m³
Velocidad terminal	V_T	6	m/s²
Flujo másico experimental en recámara de secado	ṁ	0,713	kg/s
Flujo másico experimental en plancha agujereada	ṁ	0,760	kg/s
Flujo másico experimental de transición rectangular	m	1,187	kg/s
Velocidad inicial del blower a 50°C	Vi	40	m/s
CFM (Cubic feet per minute) del blower	CFM	7,166	ft ³ /min
Motor	Р	3/4 Hp	Нр
	w	1800	RPM
Resistencia	R	2000	W
Diámetro de salida de aire del Blower	D _{blower}	5"	pulg

CONCLUSIONES

- La selección de diámetros de orificios de placa de 4 a 6 mm hace que el comportamiento del aire sea turbulento, con diámetros de 10-12 mm ocasiona que el flujo se distribuya solo hacia el centro. Por lo cual se comprobó que con 8mm el comportamiento del flujo del aire es laminar y más distributivo.
- La potencia eléctrica teórica del secador es de 2811.54
 W/h dando un costo de 1,44 dólares por las 4 horas de secado

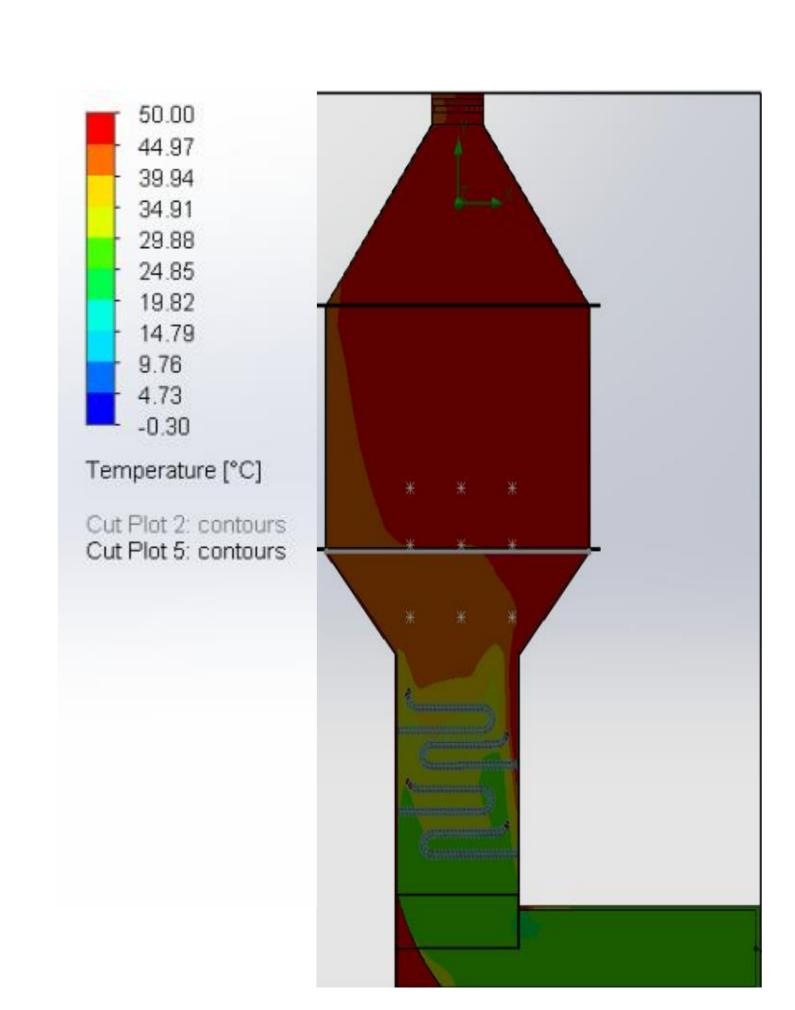


Ilustración 5.- Temperatura del flujo del aire en la recámara de secado cuando alcanza 50°C, t=40 h

- Al comparar el comportamiento del secado a diferentes temperaturas, se visualizó teórica y de forma práctica que la temperatura a 50°C es la que muestra mejores resultados de secado
- Se construyó un secador con un rango de temperatura 50°C-70°C y velocidad variable desde 900 rpm - 1800 rpm con la finalidad que el usuario pueda registrar distintas pruebas controladas, facilitando el cálculo de potencia por cada ciclo y el registro de estas