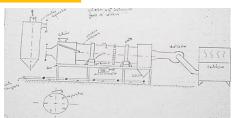


DE DESARROLLO SOSTENIBLE

La ESPOL promueve los Objetivos de Desarrollo Sostenible

Incremento energético mediante el diseño de un secador rotativo de bagazo de caña.

PROBLEMA


La producción mundial de caña de azúcar para 2017 fue de 1891 millones de toneladas, donde el 25% es bagazo y se utiliza como combustible para producir energía, sin embargo, posee alrededor de 50% de humedad que reduce el poder calorífico, disminuye la temperatura de caldera y consume energía antes de quemarse, retardando el proceso de cogeneración y provocando pérdidas de energía y dinero.

OBJETIVO GENERA

Diseñar un secador rotativo con capacidad de 10 Ton/h de bagazo de caña, mediante cálculo térmico y herramientas de diseño CAD 3D y simulación para una mejora en la eficiencia energética y reducción de costos operativos relacionados a la cogeneración.

PROPUESTA

CostosPlanos

RESULTADOS

DISEÑO TÉRMICO						
Variable	valor	Unidad				
m F*	7,088	Kg/s				
m B*	2,78	kg/s				
∆mvb*	0,6415	Kg/s				
Q vap	1447,865	KW				
Q total	2224,79	KW				
Atot	3,773	m2				
h	27,7	W/m2K				
Q tbs	3030,85	KW				
hm	0,0645	m/s				
Nas*	0,5072	Kg/s				
Qvap2	1144,7	KW				

DISEÑO MECÁNICO						
Variable	Valor	Unidad				
t_sec	302	S				
L_total	6,00	m				
D in	1,5	m				
Ne	260					
de	65	in				
Np	26					
dp	6,5	in				
Wsist	22821,97	N				
Pmotor	10	HP				

Np		26						
dp		6,5	in					
Wsist	228	321,97	N					
Pmotor		10	HP					
COSTO DE FABRICACIÓN								
Compone	ente	Peso (K	g) Mate	rial	costo (USD)			
			A3	6	8336,8			
Secador ro	tativo	2992.6	A50	10	503.3			

AISI 4340

10 HP WEG

TOTAL

1101

518

782

1500

13081.1

Figura 2.15 Modelado 3D de secador rotativo

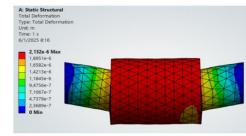
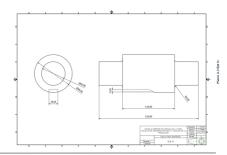



Figura 3.1. Deformación del eje debido a cargas.

CONCLUSIONES

- El diseño térmico del sistema cubre la demanda energética al proveer 3030 KW y utilizar 2224 KW para reducir la humedad del bagazo, el valor faltante se interpretó como pérdidas de energía, lo que resultó en una eficiencia de 73%.
- Los requerimientos de diseño mecánico del secador rotativo fueron cumplidos y las piezas modeladas en CAD 3D, a las que se les designo material y costo de fabricación, y cuyo valor final de \$13082 es un valor competente tras compararlo con opciones comerciales que superan los \$14000.
- Al aumentar el PCI del bagazo un 27% al reducir la humedad solo un 10%, se estimó que aumentaría la producción de energía en alrededor de 5640 KW con el flujo de 10 ton/h produciendo un ahorro de 556 USD/h, contribuyendo al aporte de energía a la planta y reducción de costos operativos.

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

rodamientos

motor

reductor velo

