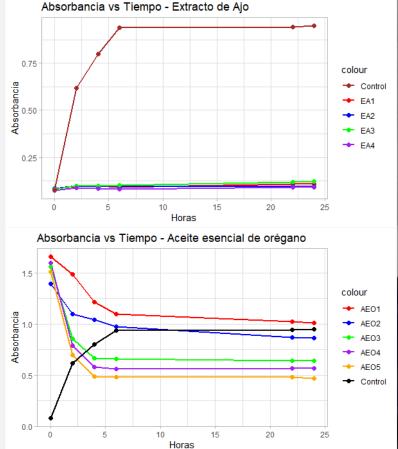
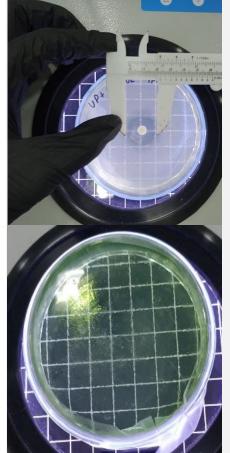
narahaemolyticus

Inhibición *in vitro* del crecimiento de *Vibrio parahaemolyticus* mediante el uso de extracto de ajo y aceite esencial de orégano

PROBLEMA

El desafío que enfrentan los productores acuícolas es la mortalidad en el cultivo por vibriosis, una enfermedad causada por *Vibrio parahaemolyticus*. Esta bacteria comúnmente se encuentra en aguas marinas y estuarinas. La prevención y tratamiento de la vibriosis involucran principalmente el empleo de antibióticos, sin embargo, un manejo inadecuado de las enfermedades y la persistente administración de antibióticos en los cultivos acuícolas contribuyen al surgimiento de cepas de vibrios resistentes.




Evaluar la eficacia de compuestos botánicos *in vitro* como inhibidores del crecimiento de *Vibrio* parahaemolyticus

PROPUESTA

A través de la pruebas de susceptibilidad antimicrobiana usando aceite esencial de orégano (*Origanum vulgare*) y extracto de ajo (*Allium* sativum) reducir la población y el crecimiento de *Vibrio parahaemolyticus* encontrando la concentración mínima inhibitoria para lograr dicho objetivo con base a resultados de autores aplicando la misma metodología

RESULTADOS

Abso	ncial de oré	gano			
AEO1	AEO2	AEO3	AEO4	AEO5	C-
1.020 ±	0.870 ±	0.641 ±	0.568 ±	0.478 ±	0.943 ±
0.059 ^a	0.185ª	0.146 ^{ab}	0.115 ^b	0.184 ^c	0.027ª

Absorbancia (Media + SD) – Extracto de ajo							
EA1	EA2	EA3	EA4	EA5	C-		
0.460 ±	0.110 ±	0.093 ±	0.121 ±	0.093 ±	0.943 ±		
0.057 ^a	0.026 ^b	0.004 ^b	0.003 ^b	0.014 ^b	0.027 ^c		

CONCLUSIONES

- Alternativas idóneas en reemplazo de antibióticos
- Amplio uso en diversas especies acuícolas
- Con base a resultados de autores bajo la misma metodología, brindan beneficios bacteriostáticos y bactericidas

