DE DESARROLLO SOSTENIBLE

La ESPOL promueve los Objetivos de Desarrollo Sostenible

Automatización del proceso de dosificado en líneas de producción para planta atunera

PROBLEMA

El tablero de control de dos líneas de una planta presentaban limitaciones tecnológicas debido a su antigüedad, lo que impactaba negativamente en la precisión y confiabilidad de la dosificación. Estas deficiencias generaban desperdicio de insumos, fallos frecuentes y dificultades para realizar un monitoreo en tiempo real.

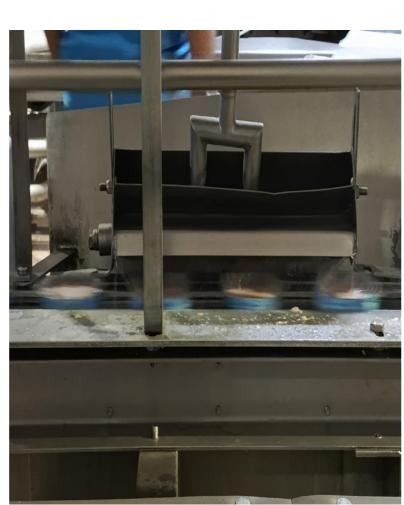
OBJETIVO GENERAL

Implementar un sistema automatizado de dosificación para el envasado de atún enlatado, optimizando la precisión, la eficiencia operativa y el control de calidad, reduciendo errores humanos y desperdicios de recursos, asegurando el cumplimiento de las normativas de seguridad alimentaria.

PROPUESTA

La modernización del tablero de control se realizó mediante la integración de sensores de peso y flujo, controlados por un PLC (Controlador Lógico Programable). Se diseñó e implementó una arquitectura automatizada que permite la regulación en tiempo real de los parámetros de dosificación, reduciendo el margen de error y mejorando la trazabilidad del producto.


Antes


Después

Programación PLC

RESULTADOS

- Reducción del desperdicio de insumos en un 25%.
- Incremento en la precisión de dosificación en un 30%.
- Mejora en la eficiencia operativa de la línea de producción en un 40%.
- Integración exitosa con tecnologías de monitoreo en tiempo real en un 20%.

Fase	Actividades	Resultados
	-Se realizo de pruebas de dosificación.	- Dosificación precisa y
Dosificación	-Registro y análisis de datos obtenidos.	consistente.
		- Identificación de
		posibles desviaciones.
Ajuste de	-Calibración de sensores.	- Parámetros óptimos
Parámetros	- Ajuste de parámetros en el PLC.	configurados.
	- Modificación de tiempos y flujos si es	- Reducción de errores en
	necesario.	la dosificación.
Pruebas de	- Verificación del funcionamiento del	- Integración sin errores.
		S
Integración	PLC y su comunicación con otros	- Respuesta eficiente del
	sistemas.	sistema ante variaciones
	- Simulación de escenarios de falla y	del proceso.
	recuperación	

CONCLUSIONES

- Se logró, mediante la implementación de sensores de peso y flujo, un llenado exacto; reduciendo así los problemas que produce la intervención manual.
- Se implementó un controlador lógico programable que regula en tiempo real los parámetros del proceso de dosificación, asegurando la precisión y la estabilidad del sistema.
- Se reemplazó el sistema antiguo por un nuevo tablero compatible con las líneas de producción, facilitando la integración con tecnologías avanzadas y mejorando la operatividad del sistema.
- Se evidencia una mejora significativa en la eficiencia operativa, la reducción de errores y desperdicios, y el cumplimiento de los estándares de calidad requeridos en la industria alimentaria.

