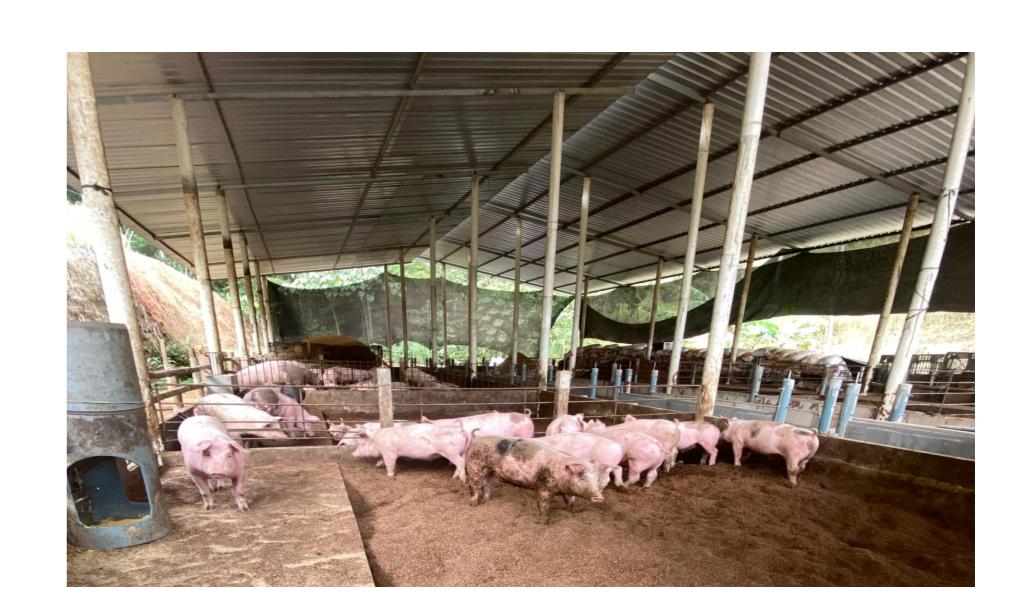


SOSTENIBLE

La ESPOL promueve los Objetivos de Desarrollo Sostenible

OBJETIV S

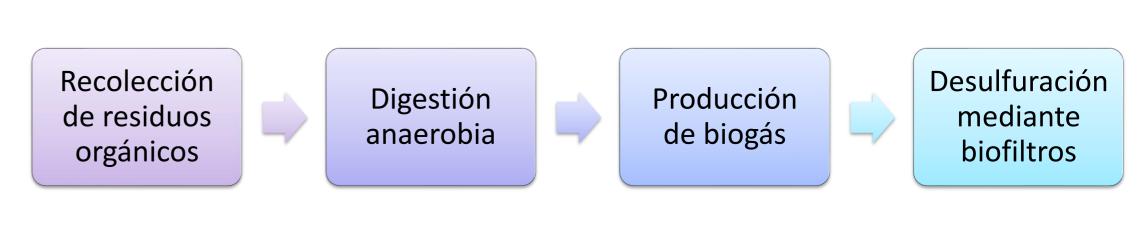

Biofiltros para tratamiento sostenible de biogás en granjas porcinas rurales

PROBLEMA

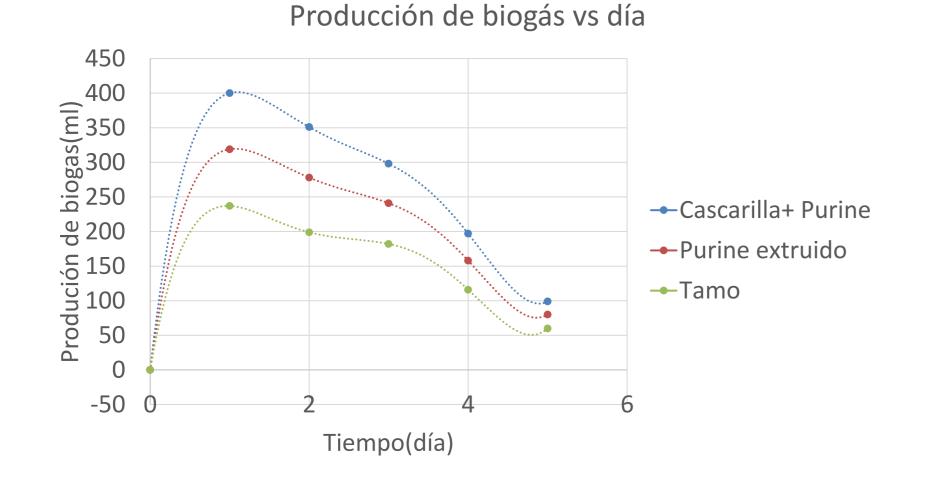
El biogás producido en granjas porcinas mediante digestión anaeróbica contiene sulfuro de hidrógeno (H₂S), un gas tóxico y corrosivo que daña la infraestructura, incrementa los costos de mantenimiento y limita el uso eficiente del biogás como fuente de energía. Esta situación compromete la sostenibilidad económica y operativa de las granjas, especialmente en zonas rurales donde el acceso a fuentes energéticas confiables es limitado.

OBJETIVO GENERAL

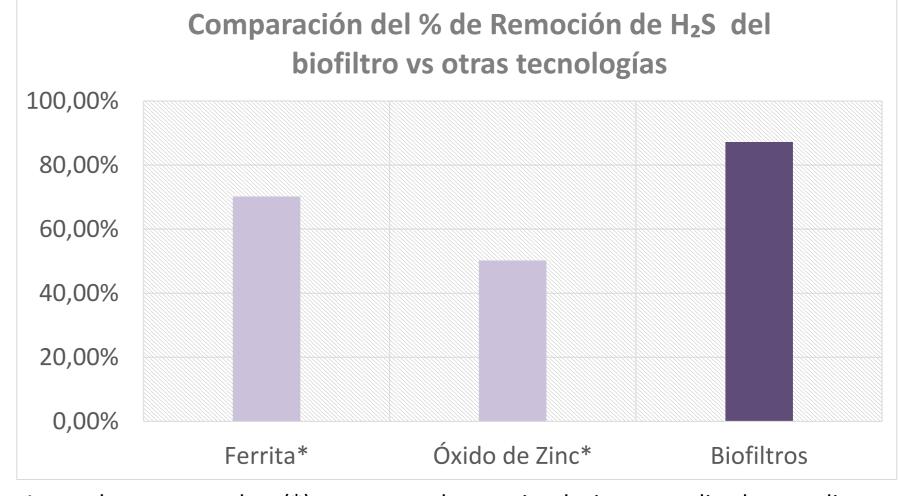
Diseñar un sistema a escala de laboratorio de tratamiento del biogás mediante biofiltros para una remoción superior al 80% del $\rm H_2S$ presente en el biogás producido a partir de la digestión anaerobia del purine de las granjas porcinas.



PROPUESTA


Se propone desarrollar un sistema de biofiltros a escala de laboratorio para remover eficientemente el H_2S del biogás generado en granjas porcinas. Este sistema empleará un complejo microbiano que contienen bacterias oxidativas quimiolitótrofas que descomponen las moléculas de H_2S , fomentando una alternativa sostenible que permita el aprovechamiento del biogás como fuente de energía renovable, reduzca los costos operativos y disminuya el impacto ambiental en zonas rurales.

Composición del complejo microbiano		
Componentes	Concentración (UFC/mL)	
Complejo natural de		
bacterias	1 × 10 ¹¹	
Aeróbicas, facultativas y		
anaeróbicas		
Hongos descomponedores	1×10^{4}	
Levaduras de tipo alimenticio	1×10^{3}	


RESULTADOS

Concepto	Descripción
Costo total del sistema	\$257.6 USD
Producción promedio de biogás	270 mL/día
Duración de la prueba	5 días
Total de biogás tratado	1350 mL
Costo por mL tratado	\$0.19 USD/mL

Composición del biogás a la entrada del biofiltro		
Componente	Porcentaje (%)	
Metano (CH₄)	42	
Dióxido de carbono (CO ₂)	52	
Monóxido de carbono (CO)	0	
Oxígeno (O ₂)	0,2	
Amoníaco (NH₃)	0,3	
Sulfuro de hidrógeno (H₂S)	0,4063	
H2 y otros gases	5	

Composición del biogás a la salida al biofiltro	
Componente	Porcentaje (%)
Metano (CH₄)	42
Dióxido de carbono (CO₂)	52
Monóxido de carbono (CO)	0
Oxígeno (O₂)	0,2
Amoníaco (NH₃)	0,3
Sulfuro de hidrógeno (H₂S)	0,0522
H2 v otros gases	5

Los valores marcados (*) corresponden a simulaciones realizadas mediante Aspen Plus, mientras que los datos del biofiltro se obtuvieron experimentalmente a escala de laboratorio.

CONCLUSIONES

- Los biofiltros demostraron ser la tecnología más eficiente, logrando una remoción superior al 85% de H₂S en el biogás.
 Esta tecnología mejora significativamente la calidad del biogás, haciéndolo apto para su uso energético y prolongando la vida útil de la infraestructura en las granjas porcinas.
- Los biofiltros se presentan como una opción viable para minimizar los costos asociados al daño en tuberías y motores causado por el H₂S en el biogás. Su capacidad para purificar el biogás lo posiciona como una solución económica potencial para las granjas porcinas, especialmente en zonas rurales con acceso limitado a fuentes de energía.
- El sistema de biofiltros es una solución viable y escalable para optimizar el uso del biogás en granjas porcinas. Su bajo costo de operación, junto con la posibilidad de replicarlo en diferentes contextos, lo convierte en una herramienta clave para incrementar la sostenibilidad económica de las granjas.

