
OBJETIV©S
DE DESARROLLO
SOSTENIBLE

La ESPOL promueve los Objetivos de Desarrollo Sostenible

Desarrollo de un modelo matemático que determine el espesor de pared para diseño de prótesis mamarias externas

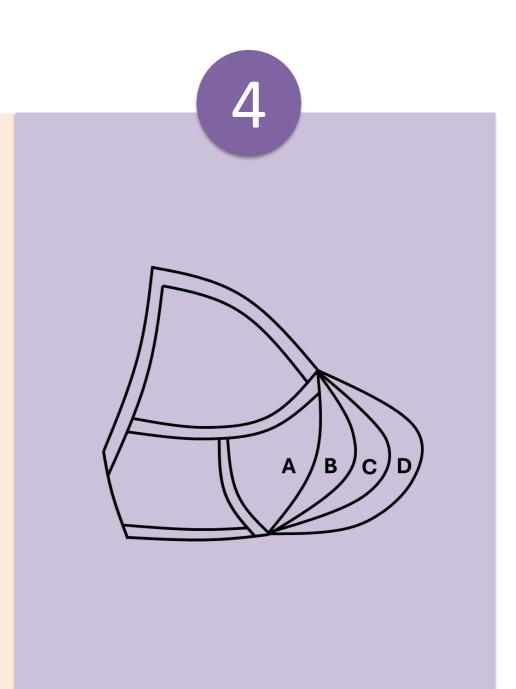
PROBLEMA

El Proyecto Zule® (ESPOL, FIMCP) busca desarrollar prótesis mamarias externas que reproduzcan con precisión la forma y el peso del seno natural, reduciendo molestias y desviaciones posturales. Actualmente, el espesor de pared se define de manera empírica, lo que genera prótesis muy delgadas (frágiles y deformables) o demasiado gruesas (pesadas e incómodas). Esto evidencia la ausencia de un criterio teórico que optimice el diseño. Por lo tanto, se requiere un modelo matemático que relacione geometría y propiedades del material con el espesor óptimo, permitiendo fabricar prótesis personalizadas que combinen resistencia, ligereza y confort.

OBJETIVO GENERAL

Desarrollar un modelo matemático para calcular el espesor de pared en prótesis mamarias externas, relacionando las dimensiones geométricas y las propiedades mecánicas del material, ofreciendo personalización y equilibrio entre resistencia mecánica, ligereza y confort.

METODOLOGÍA



GEOMETRÍA DEL SENO 2

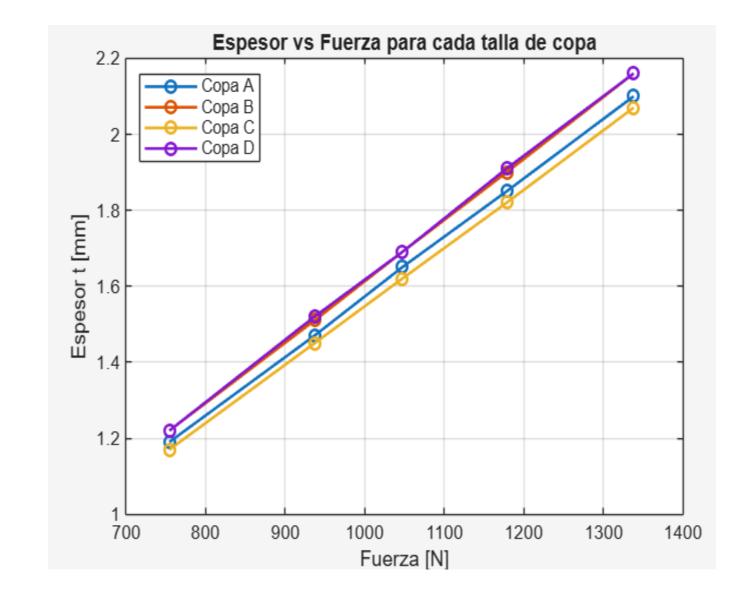
$$\sigma_b = \frac{Mc_y}{I}$$

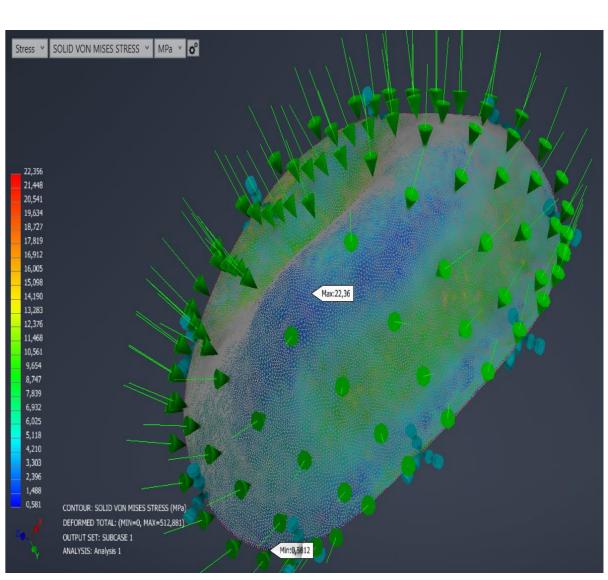
ANÁLISIS MATEMÁTICO Y MECÁNICO Fus PRO

SIMULACIÓN Y FACTOR DE CORRECCIÓN

ANÁLISIS DE TAMAÑO DE COPA

RESULTADOS


$$t = \frac{1}{n} \frac{16F}{4\pi^3 \sigma_b} K_1 K_2$$


$$K_1 = \left| \frac{\pi (2h^2 - a^2 - b^2)}{\sqrt{2h^2 + a^2 + b^2}} - \frac{4(b^2 - c^2)}{\sqrt{b^2 + c^2}} \right|$$

$$K_2 = \frac{(\pi - 2)(2h + \pi c)}{b\sqrt{a^2 + b^2}(4h + 3\pi c)}$$

$$n(b,c) = \begin{cases} 0,272, & \text{si } b < c \\ 0,060, & \text{si } b \ge c \end{cases}$$

	Talla A		Talla B		Talla C		Talla D	
$F_1[N]$	t [mm]	%error						
754,51	1,19	18,57%	1,22	21,86%	1,17	16,54%	1,22	22,03%
936,89	1,47	17,78%	1,51	21,06%	1,45	15,77%	1,52	21,22%
1047,12	1,65	9,70%	1,69	12,75%	1,62	7,83%	1,69	12,90%
1178,45	1,85	5,82%	1,90	8,76%	1,82	4,02%	1,91	8,91%
1337,97	2,10	5,01%	2,16	8,05%	2,07	3,33%	2,16	8,20%

CONCLUSIONES

Se obtuvo un modelo matemático que predice con un error de entre 3,33% a 22,03% (mitigado gracias a dos factor de corrección experimental) el espesor de pared para cada talla de copa desde la A hasta la D. Además, gracias al modelo matemático se puede reducir costos de producción al requerir de menos material de impresión. Este proyecto aún con las limitaciones presentes, da pie a estudios más especializados que optimicen el modelo al considerar irregularidades y asimetrías presentes en los escaneos tridimensionales.

REFERENCIAS

- Zhao, Y., Wu, C., Luh, D., & Zhang, X. (2024). A Novel Breast-Volume Self-MeasurementMethod with Improved Convenient and Accuracy. Applied Sciences, 14(21),10071. https://doi.org/10.3390/app142110071
- Budynas, R. G., Nisbett, J. K., et al. (2011). Shigley's mechanical engineering design(Vol. 9). McGraw-Hill New York.
- Coltman, C. E., Brisbine, B. R., Molloy, R. H., & Steele, J. R. (2022). Effect of torso andbreast characteristics on the perceived fit of body armour systems among femalesoldiers: Implications for body armour sizing and design. Frontiers in Sports and Active Living, 4, 821210.

