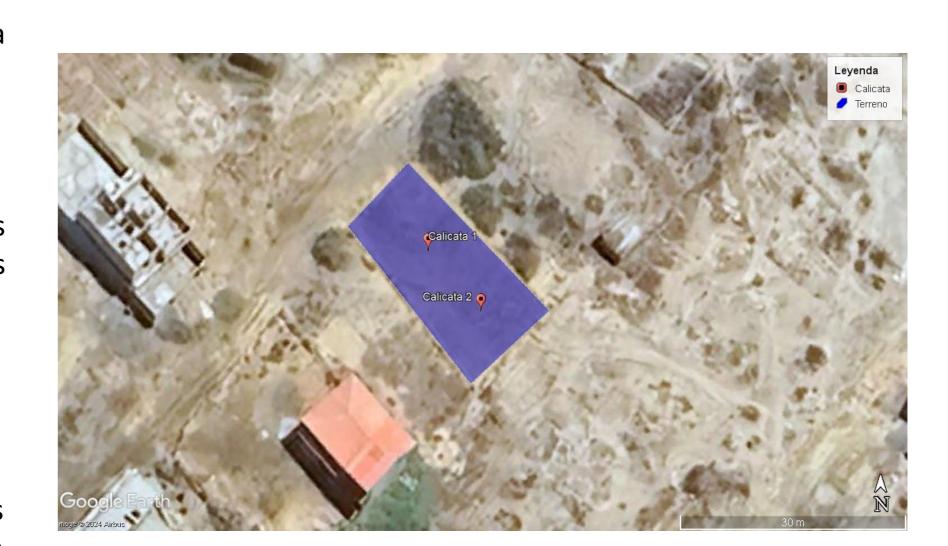


La ESPOL promueve los Objetivos de Desarrollo Sostenible

Diseño de una Vivienda de Dos Pisos en San Pablo: Implementando BIM

OBJETIV S

PROBLEMA


San Pablo, una región costera de Ecuador enfrenta múltiples desafíos en la construcción debido a su:

- Vulnerabilidad sísmica (zona VI según NEC).
- Tipo de suelo arenoso con capacidad de carga media a baja.
- Clima cálido y húmedo que acelera la corrosión y el desgaste de materiales.

La falta de aplicación de normativas sismo-resistentes y el uso nulo de tecnologías como BIM aumenta el riesgo de fallos estructurales y limita la sostenibilidad de las edificaciones.

OBJETIVO GENERAL

Diseñar viviendas sostenibles para San Pablo mediante métodos constructivos innovadores, utilizando BIM para optimizar la productividad, el presupuesto y la sostenibilidad.

PROPUESTA

Se plantea:

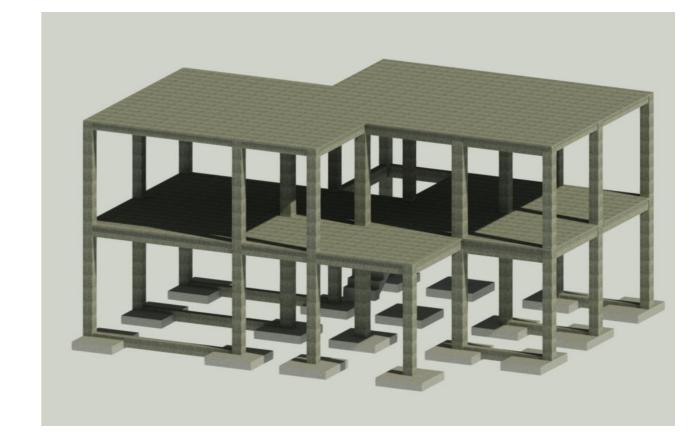
- Diseño estructural bajo la filosofía LRFD y análisis estático lineal.
- Uso de BIM para la planificación y gestión integral del proyecto.
- Adecuación a las normativas NEC para garantizar seguridad estructural y eficiencia.
- Estudio geotécnico detallado para una cimentación segura y sostenible.

Metodología BIM

BIM permite:

- Modelar la vivienda en 3D, integrando planificación (4D), costos (5D) y análisis ambiental (6D).
- Identificar conflictos constructivos durante la etapa de diseño.
- Mejorar la coordinación entre disciplinas, reduciendo errores y optimizando recursos

RESULTADOS


Arquitectónico	Área (m2)
Planta Baja	96
Planta Alta	80

Estructural	Dimensiones (m)
Zapata Aislada	1,50 X 1,50 X 0,50
Columnas	0,30 X 0,30
Vigas	0,30 X 0,50
Losa Aligerada	0,20

Eléctrico	Voltaje (V)	Potencia Instalada	
Iluminación	120	10 kW	
Tomacorriente	120		
Especiales	240		

Cisterna				
Capacidad (L)	Altura (m)	Largo (m)	Ancho (m)	
3000	2,20	1,00	1,50	

Agua Potable			
Diámetro (mm)	Material	Presión	
25 mm	PVC	30 PSI	

CONCLUSIONES

- El análisis estructural indico que el uso de pórticos de hormigón armado con losas aligeradas proporciona estabilidad y resistencia frente a las condiciones sísmicas de la región.
- La verificación de cimentaciones optimizadas para el suelo arenoso de San Pablo asegura la distribución uniforme de las cargas, evitando asentamientos diferenciales.
- La implementación de la metodología BIM ha demostrado ser una herramienta clave para mejorar la coordinación y eficiencia en los diseño y construcciones, reduciendo errores, tiempo y costos asociados.
- El uso de luminarias LED minimiza el consumo energético y la distribución de circuitos reduce la sobrecarga en los sistemas asegurando seguridad y eficiencia.
- El diseño de tuberías garantiza un flujo continuo de agua potable y manejo eficiente de aguas residuales, además el sistema de drenaje pluvial esta diseñado para manejar lluvias intensas y prevenir inundaciones.

