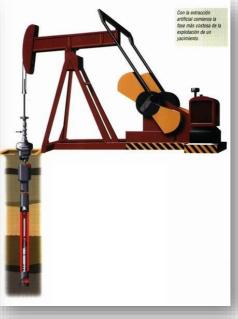


OPTIMIZACIÓN DE METODOLOGÍA APLICADA PARA LA SELECCIÓN DEL SISTEMA DE LEVANTAMIENTO ARTIFICIAL CASO: CAMPO ESPOL

PROBLEMA

En nuestro país actualmente no se realiza un estudio previo a la selección de un sistema de levantamiento artificial, su metodología es basada en la práctica y la experiencia, a esto añadirle que la mayoría de campos en Ecuador son maduros. Esto significa que su energía se ha ido agotando con el pasar del tiempo y considerando que la economía del país aún depende en gran porcentaje de la producción de petróleo, es por esto que es necesario una nueva metodología para seleccionar el sistema de levantamiento artificial óptimo para un campo.



OBJETIVO GENERAL

Fortalecer la metodología de la selección del sistema de levantamiento artificial mediante la gráfica de índice de presión del yacimiento vs. índice de productividad para la optimización y crecimiento económico del campo Lago Agrio.

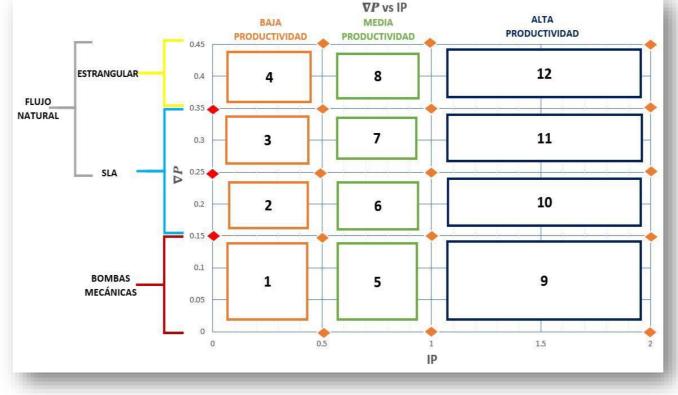
PROPUESTA

IDENTIFICAR

Sistemas de Levantamiento Artificial utilizados actualmente en el campo ESPOL

- Bombeo
 Hidráulico
- Bombeo
 Mecánico
- Bombeo de cavidades progresivas
- Bombeo Electro sumergible

EXAMINAR


Factores:

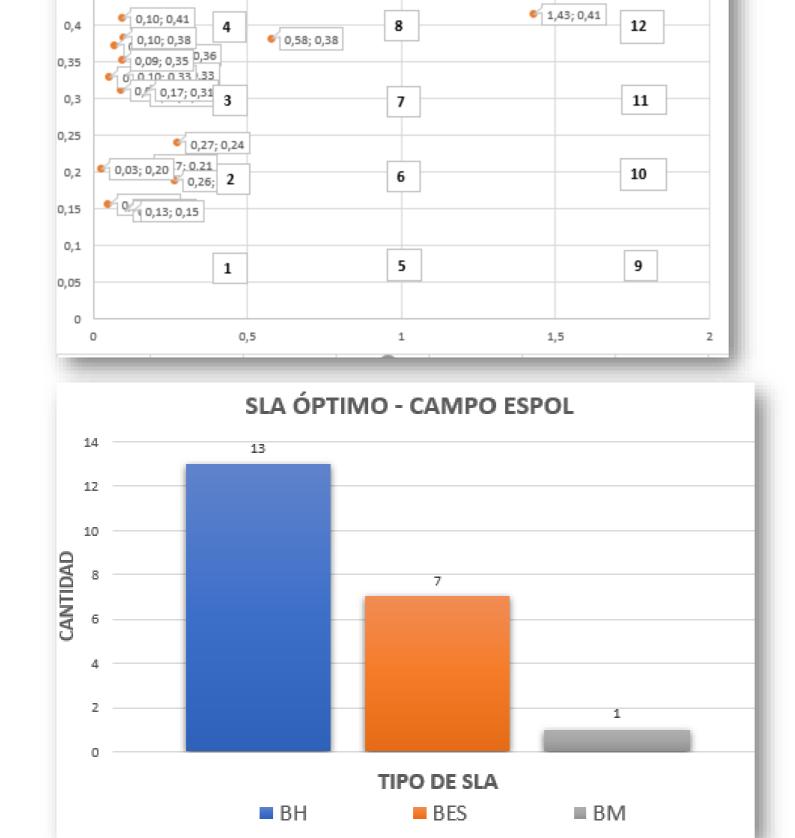
- Presión del yacimiento
- Profundidad de levantamiento
- Índice de productividad

METODOLOGÍA

PRE- SELECCIÓN

Match en gráfica VP vs. IP

Criterios de pre selección según región


Grupo	Área	Criterio para la preselección	
		del SLA	
		En el área 1 y 2 se necesita un	
		tipo de SLA. En el área 3 y 4	
Baja productividad	1-2-3-4	existe la posibilidad de que no	
		se necesite un SLA.	
		Necesariamente se necesita un	
	5-6	SLA	
Mediana productividad		Podría producir a flujo natural o	
	7-8	se utilizaría un SLA	
		Necesariamente se necesita un	
	9-10	SLA	
		La probabilidad de utilizar un	
Alta productividad		SLA es baja, ya que su flujo es	
	11-12	de manera natural y tiene una	
		alta productividad.	

SELECCIÓN

Valoración para conocer el más óptimo

Valoración	BOMBEO MECANICO	BOMBEO HIDRAULICO	BOMBEO ELECTROSUMERGIBLE	PROGRESIVAS
Tasa de producción deseada, bppd	1	1	1	1
Profundidad de levantamiento, TVD	1	1	1	1
Gravedad API	1	1	1	1
Temperatura del Yacimiento, °F	1	1	1	1
Dogleg limita la profundidad de levantamiento	1	1	1	1
Grado de inclinación del pozo	1	1	1	1
Manejo de corrosión	3	3	3	1
Manejo de gas	2	2	2	2
Manejo de solidos	2	2	2	3
Servicio-mantenimiento	WORKOVER-PULLING	HIDRAULICA- WIRELINE	WORKOVER- PULLING	WORKOVER- PULLING
Tipo de Ubicación	On shore	On shore	On shore	On shore
Disponibilidad de energía eléctrica	SI	SI	SI	SI
Disponibilidad de gas comprimido	SI	SI	SI	SI
Disponibilidad de fluido motriz	SI	SI	SI	SI
VALORACIÓN	13	13	13	12

RESULTADOS

 ∇P vs IP

Identificamos el SLA utilizado actualmente en los pozos del campo ESPOL

 Encontramos que el campo ESPOL tiene actualmente 21 pozos productores de los cuales la mayoría tiene un BAJO ÍNDICE DE PRODUCTIVIDAD

SLA más óptimo

De los 21 pozos productores, 13 tienen un SLA óptimo para su producción, 7 debería utilizar un SLA tipo Bombeo Electro Sumergible y 1 debería utilizar Bombeo Hidráulico.

CONCLUSIONES

- El sistema de levantamiento artificial hidráulico es apropiado para 11 pozos, de los 21 productores que existen actualmente en el campo ESPOL.
- De acuerdo con el análisis realizado de los 10 pozos que utilizaban el SLA tipo BES, se concluyó que 6 mantienen un SLA óptimo, y 4 necesitan cambiar el tipo de SLA.
- La data proporcionada del campo ESPOL nos permitió comparar los tipos de SLA, con el fin de seleccionar el más óptimo para cada pozo.
- Acorde con los parámetros más importantes de índice de presión del yacimiento e índice de productividad, se permite visualizar la optimización del SLA a utilizar.