

DE DESARROLLO SOSTENIBLE

La ESPOL promueve los Objetivos de Desarrollo Sostenible

NUEVO COMBUSTIBLE: PRODUCCIÓN DE BIOETANOL MEDIANTE EL USO DE CELULASA DE ORIGEN FÚNGICO

PROBLEMA

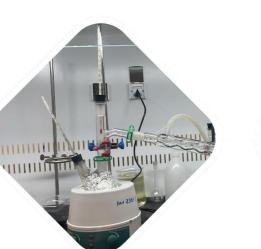
En Ecuador, los lodos papeleros con alto contenido lignocelulósico se destinan a rellenos o compostaje, desaprovechando su potencial energético. La ausencia de estudios experimentales locales limita su transformación en bioetanol mediante procesos fermentativos.

OBJETIVO GENERAL

Evaluar la producción de bioetanol a partir de lodo papelero pretratado e hidrolizado mediante fermentación alcohólica controlada, evaluando el efecto de la temperatura y el tiempo de incubación, así como su viabilidad económica preliminar, en condiciones de laboratorio.

PROPUESTA

Transformar el lodo papelero en una fuente alternativa de bioetanol mediante **fermentación alcohólica** controlada. Desarrollar y validar, a escala de laboratorio, un proceso biotecnológico para convertir **lodos papeleros pretratados e hidrolizados en bioetanol**, optimizando temperatura y tiempo de incubación mediante un diseño de superficie de respuesta (FCCCD) con *Saccharomyces* bajo anaerobiosis.

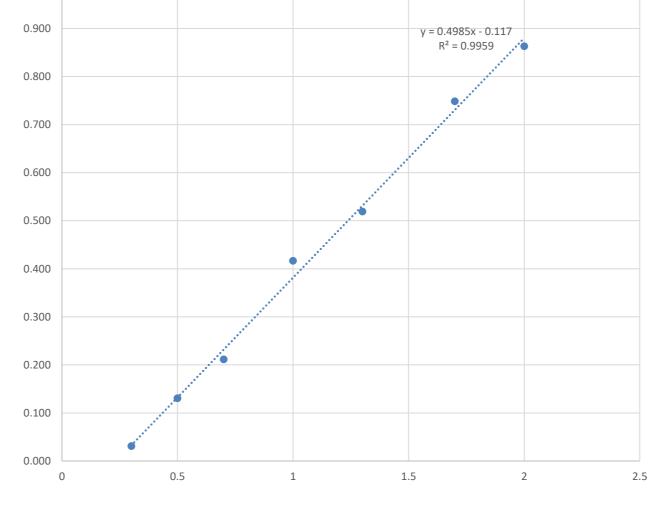


Lodo papelero

Tratamiento alcalino

Tratamiento ácido

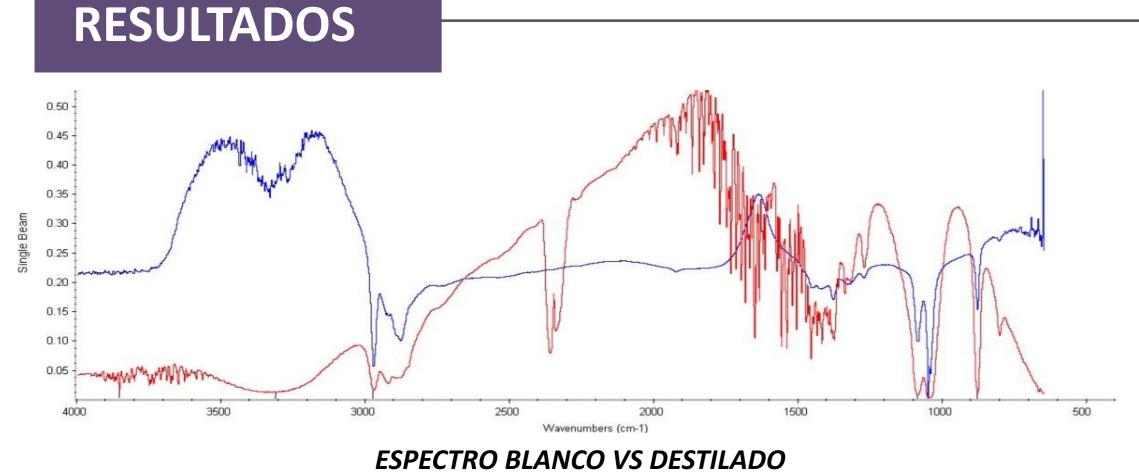
Hidrólisis enzimática


1.000

Fermentación

Proceso de destilación

Bioetanol

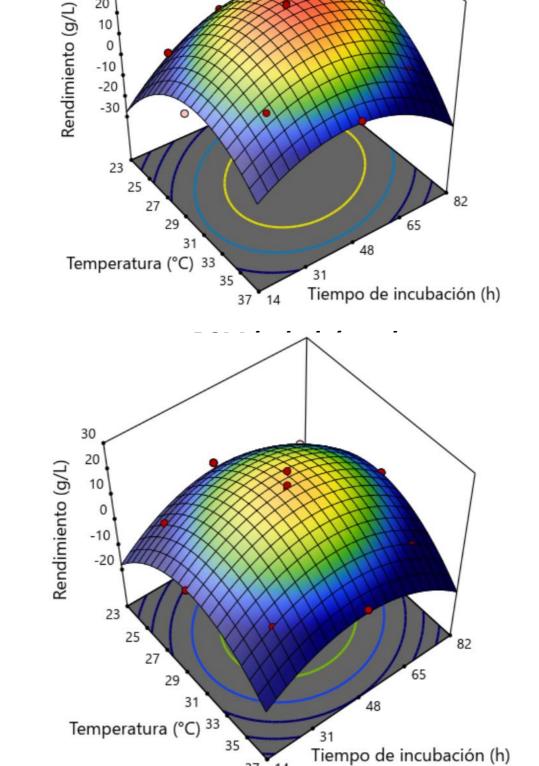

Parámetro	Valor aplicado
Volumen de matraz	250 mL
Masa de lodo seco	20 g
Volumen de buffer citrato	100 mL
pH del medio	4.8
Enzima utilizada	Trichoderma reesei (Sigma-Aldrich)
Dosis enzimática	15 FPU/g de sustrato seco
Temperatura de incubación	50 °C
Tiempo de incubación	48 horas
Agitación	120 rpm
Toma de muestras	Varias durante el proceso

PARÁMETROS EXPERIMENTALES

CURVA DE CALIBRACIÓN PARA LA CUANTIFICACIÓN DE AZÚCARES REDUCTORES

Valor (USD)

49.27


68.54

117.81

10

11.78

RSM lodo líquido

PROYECCIÓN DE COSTO DE PRODUCCIÓN A ESCALA MAYOR

CONCLUSIONES

Descripción

Costo Total de Reactivos (Escala Mayor)

Costo Total de Energía (Escala Mayor)

Costo Total de Producción (Escala Mayor)

Etanol Producido (Escala Mayor, L)

Costo por L de Etanol (USD/L, Proyectado)

- Este enfoque promueve la economía circular al valorizar residuos industriales y reducir la dependencia de combustibles fósiles.
- La temperatura y el tiempo de incubación son variables críticas para optimizar la fermentación alcohólica con *Saccharomyces cerevisiae*.
- El lodo papelero puede transformarse en bioetanol mediante procesos biotecnológicos sostenibles.

