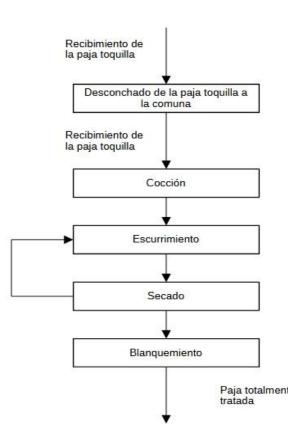
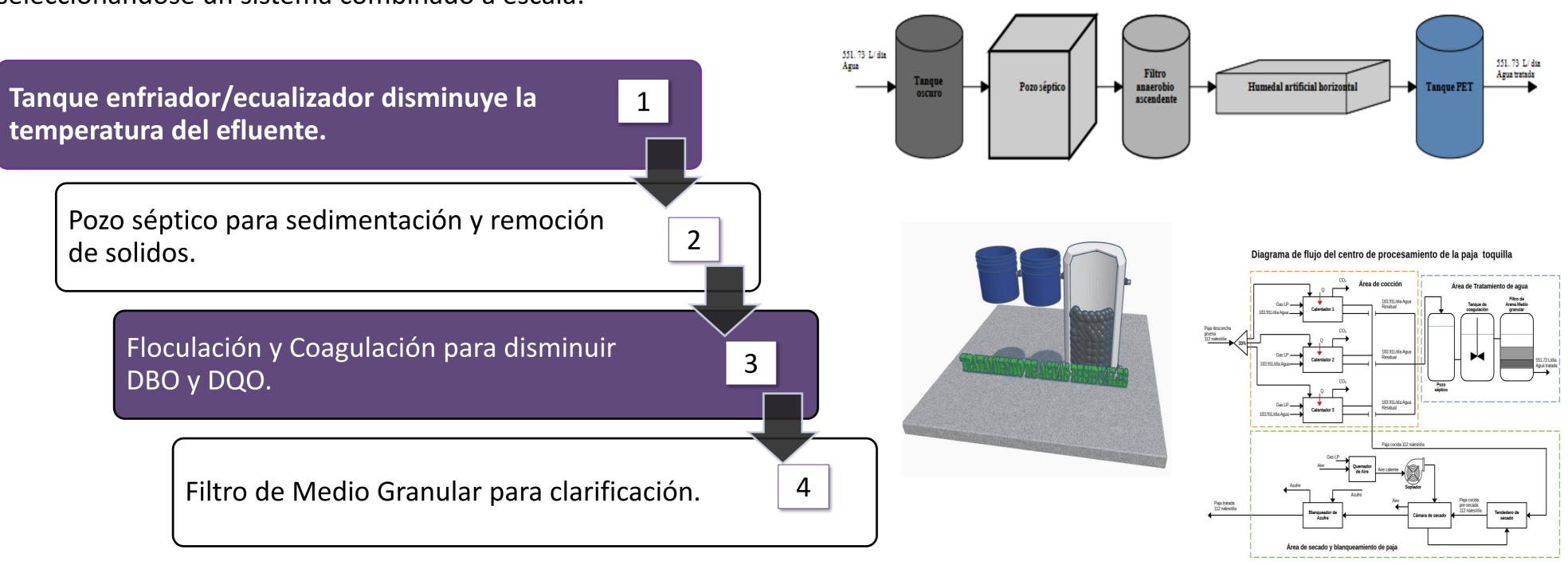


La ESPOL promueve los Objetivos de Desarrollo Sostenible

Diseño de un sistema de tratamiento de aguas residuales del procesamiento de paja toquilla en la comuna Barcelona.


PROBLEMA

La paja es la materia prima principal para el desarrollo de Barcelona – Santa Elena y la parte más importante, la cual se extrae la paja toquilla para la construcción de los sombreros son el cogollo con hojas enrolladas(la fibra). En el centro de procesamiento de paja toquilla en promedio se tratan al año 10 toneladas de paja procesada lo que genera 201381.45 L de agua residual no tratada lo cual genera un peligro al medio ambiente y la sanidad.


OBJETIVO GENERAL

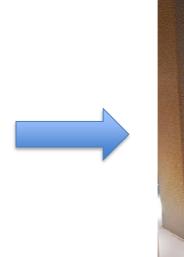
Desarrollar un programa de tratamiento y mantenimiento de la cisterna utilizada como sedimentador en el centro de procesamiento de paja toquilla de la comuna Barcelona, provincia de Santa Elena, para mejorar la eficiencia en la remoción de contaminantes del efluente generado y asegurar el proceso para mayor secado cumplimiento de la normativa ambiental vigente en Ecuador.

PROPUESTA

Se analizaron alternativas tecnológicas de bajo costo y fácil operación, seleccionándose un sistema combinado a escala:

RESULTADOS

Caracterización del agua residual del proceso



		Criterio para descargas	RESULTADOS					
Parámetros	Unidades	TULSMA Libro VI	0	Agua de primera tanda	Agua de segunda tanda	Agua de tercera tanda		
pН	-	6.0 - 9.0	6.92	6.53	6.08	6.53		
Conductividad	us/cm	< 4688	2110	3420	4620	5980		
TDS	mg/L	< 3000	1050	1710	2320	3000		
Temperatura	°C	27 ± 5	25.9	80	79.1	81.5		
DQO	mg/L	< 250	21.1	351	> 1500	> 1500		
DBO5	mg/L	< 30	5.84	245.7	> 1050	> 1050		

Tratamiento del agua residual del proceso

					PRU	JEBA DOS	IS OPTIMA
VOLUMEN JARRA (ML)	750						
1909-100-0	PH INICIAL	COAGULANTE		FLOCULANTE		SEDIMENTACIÓN	
CODIGO MUESTRA		ADICIÓN (ML)	PPM	ADICIÓN (ML)	PPM	NTU	%REMOSIÓN
1	6,95	3,00	40	0,75	1	74,1	65%
2	6,95	7,50	100	0,75	1	79,1	63%
3	6.96	30.00	400	3	4	119	44%

CONCLUSIONES

- El agua residual del proceso artesanal no cumple con los límites normativos (TULSMA, OMS, NTE INEN).
- El sistema combinado propuesto (tanque enfriador + pozo séptico + filtro anaeróbico + humedal) es viable, sostenible y replicable en comunidades rurales.
- La implementación reducirá significativamente los contaminantes, mejorando la calidad del agua descargada y protegiendo la salud pública y el entorno natural.
- El proyecto contribuye directamente a los ODS 6 (Agua limpia y saneamiento) y ODS 12 (Producción y consumo responsables)

