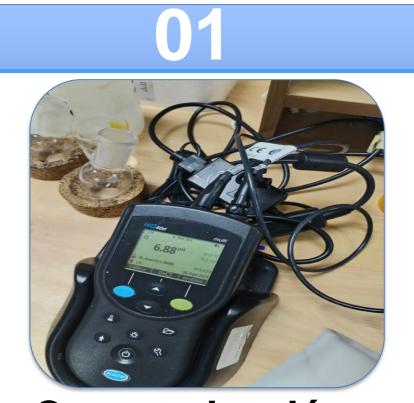


La ESPOL promueve los Objetivos de Desarrollo Sostenible

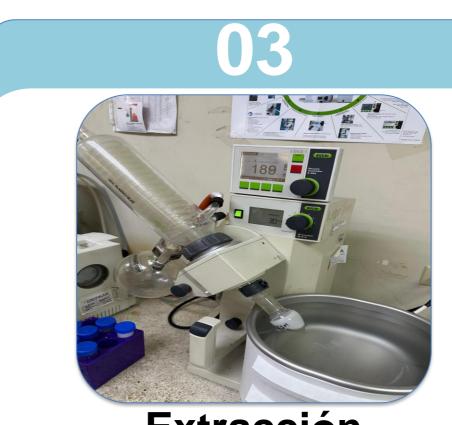
Innovación desde lo que sobra

Producción de biosurfactantes a partir de aguas residuales agroindustriales


PROBLEMA

Anualmente se desperdician entre **85 y 1650 billones** de litros de aguas residuales agroindustriales en todo el mundo. En Ecuador se destinan **\$4620 millones** a la manufactura de productos agrícolas y pecuarios. Esta industria se consolida como pilar de la economía ecuatoriana, pero la enorme cantidad de agua desechada genera gran impacto en el ambiente.

OBJETIVO GENERAL


Diseñar un biorreactor de un litro de capacidad con control de parámetros operativos (temperatura y agitación), para la producción de un biosurfactante con propiedades tensoactivas comparables a surfactantes sintéticos, mediante la fermentación de aguas residuales agroindustriales con *Bacillus subtilis*.

PROPUESTA

<u>Caracterización</u>

Medir parámetros fisicoquímicos de 3 aguas residuales agroindustriales para la determinación de la muestra más idónea en la fermentación.

Extracción

Obtener el biosurfactante en estado sólido a partir de extracción líquido-líquido con solventes orgánicos, para luego purificarlo con rotoevaporación.

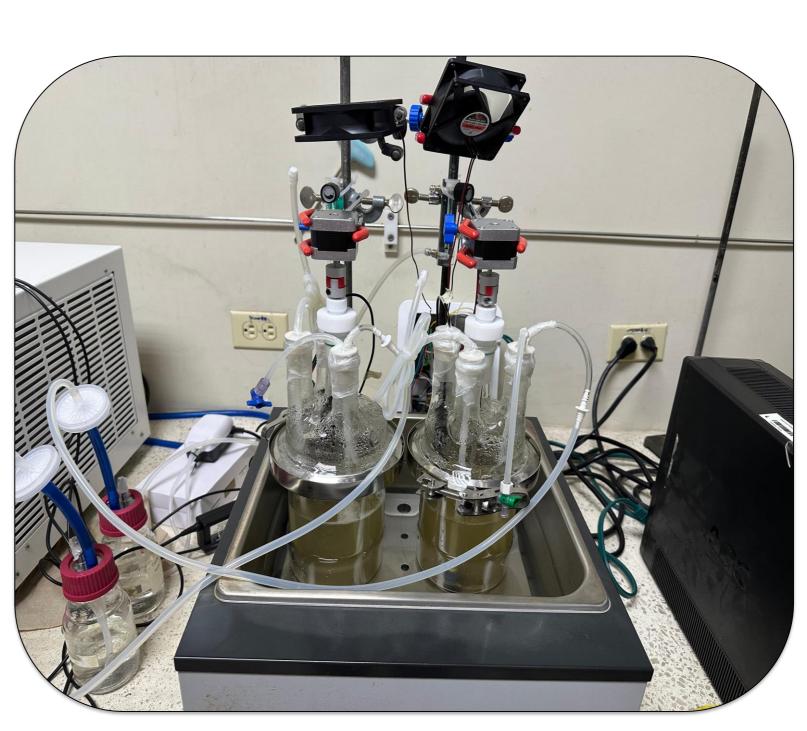


Figura 1. Sistema de fermentación.

- 15 and - 1 3 is terma at jermentation		
Parámetro	Valor/Descripción	
Tipo de agua residual	Quinua	
Microorganismo	Bacillus subtilis	
Volumen de trabajo (mL)	1000	
Temperatura (°C)	30 y 37	
Agitación (rpm)	100 y 200	
Aireación (L/h)	0	
Tiempo de fermentación (h)	72	

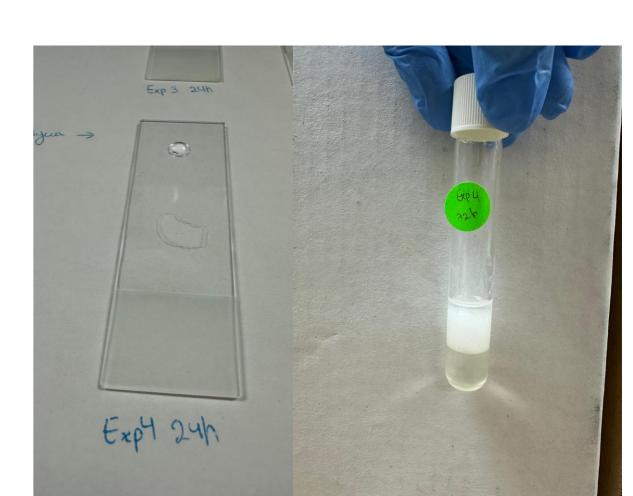
Tabla 1. Condiciones experimentales.

Experimentación Construir dos biorreactores con control de

Construir dos biorreactores con control de parámetros operativos (temperatura y agitación) para realizar la fermentación del agua escogida.

Validación Por medio de dos pruebas cualitativas, una

prueba cuantitativa (tensión superficial) y una caracterización instrumental (FTIR), se validó el producto.


RESULTADOS

Parámetro	Medición	Unidades
Conductividad	446	uS/cm
Salinidad	0.26	‰
рН	7.92	-
DQO	1194	mg/LO_2
DBO ₅	768	mg/LO_2
Azúcares	0.264	g/L
Reductores		
Carbohidratos	0.1955	g/L
Totales		
Nitrógeno Total	0.00366	g/L
Oxígeno Disuelto	5.29	mg/L

Tabla 2. Caracterización del agua de quinua.

Experimento	Tensión superficial (mN/m)	Rendimiento (g/L)
N°1 (200 RPM, 37°C)	54.6	0.445
N°2 (100 RPM, 37°C)	56.1	0.573
N°3 (100 RPM, 30°C)	60	0.473
N°4 (200 RPM, 30°C)	53	0.536

Tabla 3. Resultados de los experimentos.

Figura 2. Pruebas cualitativas de validación.

CONCLUSIONES

- El agua de lavado de quinua se eligió como sustrato para las fermentaciones, ya que sus parámetros fisicoquímicos fueron los más idóneos para las fermentaciones.
- El diseño experimental propuesto fue ejecutado en los dos biorreactores ensamblados, controlando la temperatura y
- agitación en sus niveles alto y bajo.
- Las pruebas cualitativas y FTIR confirmaron la presencia de biosurfactante, mientras que la medición de la tensión superficial reveló un mínimo de tensión superficial de 53 mN/m.

