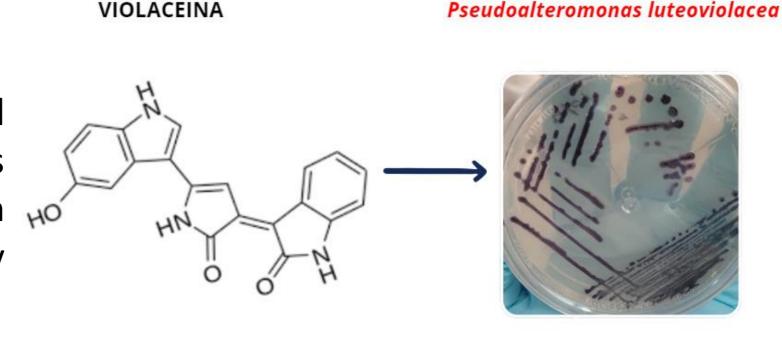
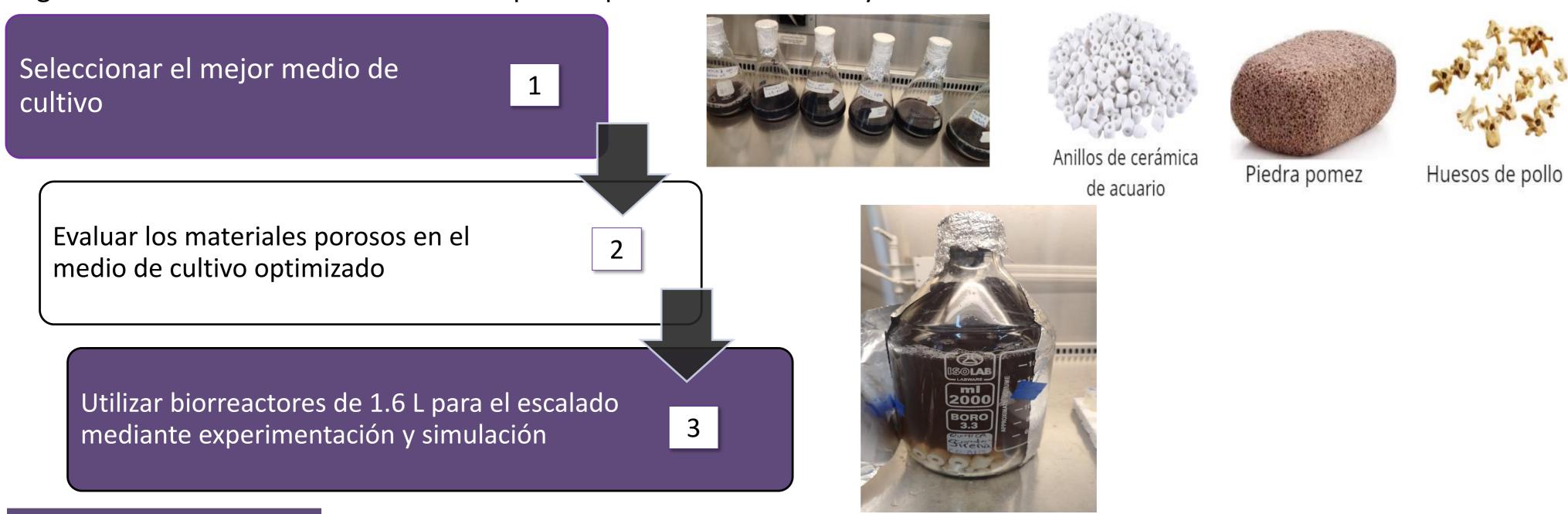
La ESPOL promueve los Objetivos de Desarrollo Sostenible

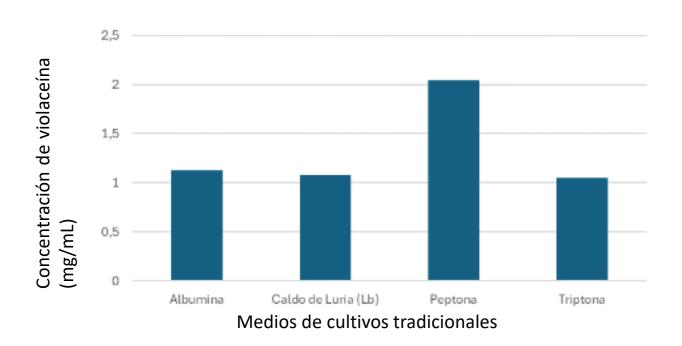

EVALUACIÓN DEL CULTIVO DE *PSEUDOALTEROMONAS*LUTEOVIOLACEA SOBRE PLACAS POROSAS EN BIOREACTOR.

PROBLEMA

Los tratamientos oncológicos actuales presentan efectos secundarios severos y costos elevados (\$2,500-\$25,000 USD). La violaceína, compuesto antitumoral prometedor, enfrenta limitaciones de producción industrial con bajos rendimientos: *Chromobacterium violaceum* (0.43 g/L), *Janthinobacterium lividum* (1.828 g/L)Se requieren alternativas terapéuticas más seguras y accesibles para pacientes oncológicos.


OBJETIVO GENERAL

Incrementar el rendimiento en la producción de violaceína mediante el cultivo de *Pseudoalteromonas luteoviolacea* en materiales porosos utilizando un medio de cultivo optimizado para su posterior escalado en un biorreactor de 1.6 L bajo condiciones controladas de temperatura y tiempo de incubación



PROPUESTA

Mejorar la biosíntesis de violaceína empleando la bacteria utilizando *Pseudoalteromonas luteoviolacea* mediante la evaluación comparativa de diferentes medios de cultivo y materiales porosos como soportes para la adhesión bacteriana. Una vez seleccionados el medio y el soporte más adecuado, el proceso se escala en un biorreactor de 1.600 mL, con seguimiento del crecimiento bacteriano para la posterior extracción y cuantificación de violaceína.

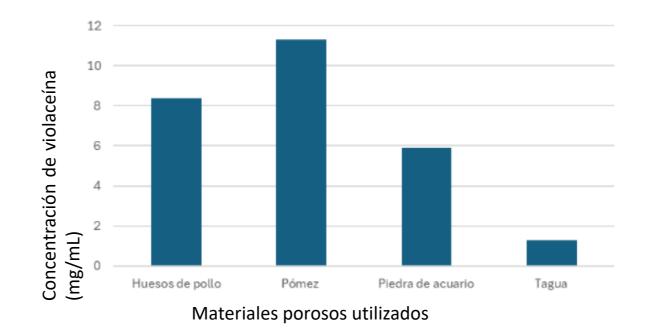

RESULTADOS

Figura 1: Resultados de experimentación de selección del mejor medio de cultivo

Compuesto	Costo por gramos (USD/g)	Concentración de Violaceína obtenida (mg/mL)	
Peptona	\$0.273	2,04	
Triptona	\$0.324	1,05	
Albumina	\$0.0978	1,13	
Caldo de Luria	\$0.396	1,08	

Tabla 1: Costo de compuestos utilizados como medio de cultivo.

Figura 2:Resultados de experimentación de selección del mejor material poroso

Material poroso	Costo por unidad (USD)	Violaceína obtenida (mg/mL)	
Huesos de pollo	\$0.01	8,4	
Piedra de acuario	\$0.21	5,9	
Piedra pómez	\$1,10	11,3	
Tagua	\$1,50	1,3	

Tabla 2: Costo de material poroso utilizado en el medio de cultivos optimizado.

Volumen (mL)	Violaceína (mg/mL)	
200	5.9	
1600	22.8	

Tabla 3: Concentración de violaceína en reactores de 200 y 1600 mL con Piedra de acuario

Violaceína obtenida en volumen de 200 mL		Violaceína obtenida en volumen de 1600 mL		
		12.00		

Tabla 4: Violaceína obtenida en medios de 200 mL y 1600 mL con piedra de acuario

CONCLUSIONES

- La investigación demostró que la albúmina constituye el medio más eficaz y económico para el crecimiento de Pseudoalteromonas luteoviolacea, alcanzando una producción de violaceína de 1.13 mg/L en un tiempo de 240 horas de incubación, solo siendo superado por la peptona, que no es un compuesto adecuado debido a su elevado costo.
- Los huesos de pollo se identificaron como el material poroso más adecuado y más económico, logrando concentraciones de violaceína de 8.4 mg/mL, representando un incremento de 8.3 veces comparado con el medio líquido convencional, sin embargo no es considerado como un material limpio
- En el biorreactor de 1.6 L, se evidenció un notable aumento en la producción de violaceína al utilizar materiales porosos y medios de mayor volumen, lo que demuestra el potencial de escalado del proceso para una mayor producción de este compuesto.

Bibliografía

Blosser, R. S., & Gray, K. M. (2000). Extraction of violacein from Chromobacterium violaceum provides a new bioassay for N-acyl homoserine lactone autoinducers. Journal of Microbiological Methods, 40(1), 47-55. https://doi.org/10.1016/S0167-7012(99)00136-0; Kanade, Y., Patwardhan, R., & Abhyankar, P. (2023). Properties of Violacein: A Promising Natural Pharmaceutical Secondary Metabolite from Marine Environment with Emphasis on Its Anticancer Activity (pp. 197-230). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6770-4 11

