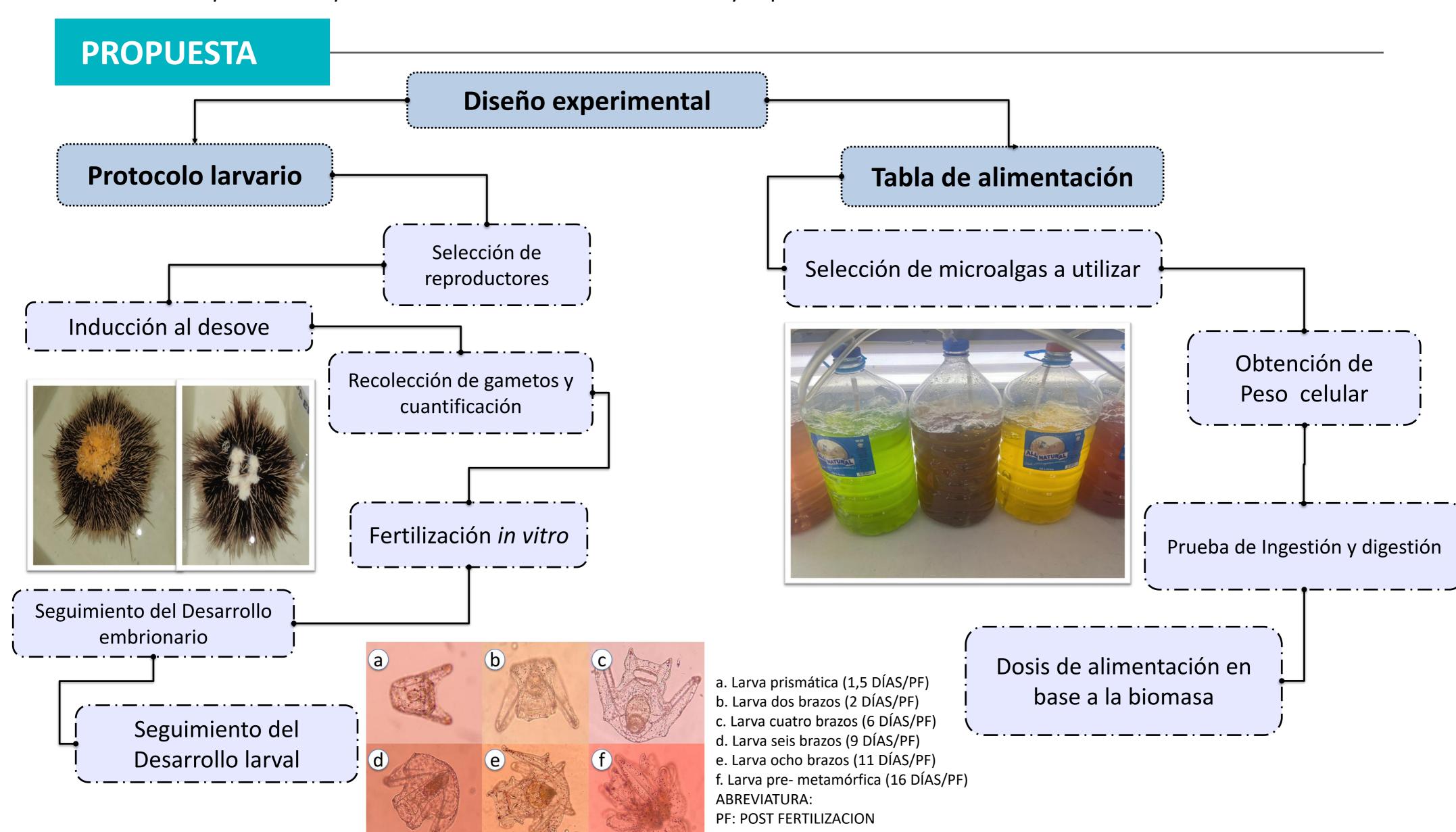


Jaiser Joan Vega Guaicha Jajovega@espol.edu.ec

La ESPOL promueve los Objetivos de Desarrollo Sostenible

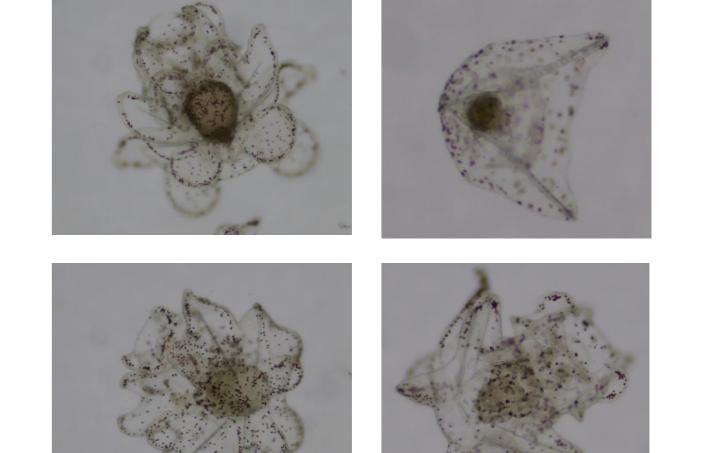

Evaluación de dietas microalgales sobre el crecimiento y supervivencia de larvas de erizo de mar (Tripneustes depressus)

PROBLEMA

El erizo de mar *Tripneustes depressus* es una especie marina muy apreciada como alimento por su carne (gónadas), y representa una oportunidad prometedora para desarrollar nuevos cultivos marinos en Ecuador. Sin embargo, las larvas de erizo son extremadamente difíciles de alimentar correctamente, a razón de que las tecnologías de producción del país están poco desarrolladas. En su etapa de larvaria, estos animales marinos necesitan consumir microalgas, pero actualmente se desconoce cuál es la mejor combinación de alimentos para esta especie. En estudios similares con otras especies de erizos, menos del 10% de las crías logran sobrevivir, lo que hace imposible establecer granjas marinas rentables.

OBJETIVO GENERAL

Evaluar el efecto de diferentes dietas microalgales (*Tisochrysis lutea, Dunaliella tertiolecta* y *Chaetoceros muelleri*) de larvas de erizo de mar *Tripneustes depressus* sobre las tasas de crecimiento y supervivencia en condiciones controladas de laboratorio



RESULTADOS

Tratamientos	DÍAS POST FERTILIZACIÓN					
Hataimentos	2	5	8	11	14	21
T1-CM	166,13±14,49a	364,75±29,21ab	419,93±16,87a	423±37,42a	425,89±26,76a	735,38±125,83a
T2-TISO	166,13±14,49a	369,98±33,88ab	441,44±28,10b	471,52±41,60b	393,66±50,58a	427,62±97,86b
T3-DT	166,13±14,49a	322,97±23,31c	362,48±37,10c	335,17±29,46c		
T4-CM+TISO	166,13±14,49a	381,79±33,97a	448,87±25,92b	480,01±28,32b	458,24±59,20b	599,67±125,83c
T5-CM+DT	166,13±14,49a	347,61±34,72b	390,8±23,62d	409,58±25,76a		
T6-TISO+DT	166,13±14,49a	353,17±28,33b	379,79±21,63cd	358,59±28,20c		
T7-CM+TISO+DT	166,13±14,49a	366,45±27,98ab	393,11±13,98d	429±32,29a	453,41±50,84b	

	TRATAMIENTOS	SUPERVIVENCIA FINAL	POBLACION FINAL	
	T1-Chaetoceros muelleri (PRE METAMORFICAS)	0,64% ± 0,70	384	
	T2-Tisochrysis lutea (4 BRAZOS)	5,56% ± 4,8	5004	
	T4- CM+TISO (PRE METAMORFICA)	0,5% ± 0,90	300	

CONCLUSIONES

- Dunaliella tertiolecta (T3) y sus combinaciones mostraron el menor desempeño durante todo el experimento. Los tratamientos con Tisochrysis lutea(T2, T4) dominaron el crecimiento larval desde el día 8, siendo T4 (TISO+CM) y T7 (TISO+CM+DUNA) superiores al día 14
- T1 (Chaetoceros muelleri) logró el mayor crecimiento (735.38 μm) y desarrollo pre-metamórfico, seguido por T4 (TISO+CM, 599.67 μm) que también alcanzó pre-metamorfosis. T2 (T. lutea) creció menos (427.62 μm) y permaneció en 4 brazos, mientras que los tratamientos con D. tertiolecta no sobrevivieron hasta el final.
- T2 (*TISO*) mostró la mayor supervivencia final (5.56%), seguido por T1 (*CM*, 0.64%) y T4 (TISO+CM, 0.50%). El período crítico de mortalidad masiva (días 9-14) eliminó completamente los tratamientos con *D. tertiolecta* (T3, T5, T6).

