

La ESPOL promueve los Objetivos de Desarrollo Sostenible

DISEÑO TÉCNICO Y SOSTENIBLE DE VÍA DE ACCESO RURAL

PROBLEMA

- Recinto San Joaquín, en El Triunfo, cuenta con único acceso vial construido artesanalmente sin criterios técnicos.
- Durante la temporada de lluvias, la vía presenta inestabilidad del suelo y deterioro acelerado.

1

Inseguridad via

Restricciones en actividades económicas y sociales

Limita el desarrollo integral de la

Movilidad reducida de habitantes

OBJETIVO GENERAL

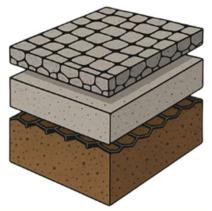
Desarrollar el diseño de una vía de acceso a la finca ubicada en El Triunfo, mediante la aplicación de criterios de ingeniería civil, sostenibilidad y consumo responsable, con la finalidad de que se genere una solución eficiente que garantice la seguridad vial y el confort de los usuarios.

PROPUESTA

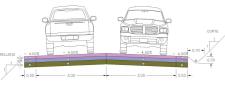
Estructura del pavimento conformada por:

Uso de materiales Sostenibles

Reducción de Costos


Confort al usuario

Capa de rodadura de empedrado



RESULTADOS

Comparación de espesores de diseño

Capa		Con geoceldas Espesor [cm]		
Empedrado	15	12	3	20%
Base estabilizada con cemento	18	15	3	17%
Suelo estabilizado	40	20	20	50%
TOTAL	73	47	26	36%

	Trazado Geométrico		
	Clase según MOP	v	
	Clase de pavimento	Empedrado	
	Ancho de pavimento	6 m	
	Ancho de espaldones	0.5 m	
	Longitud prom. de rectas	42.1 m	
	Radio prom. de curvas	25.7 m	
	Tramo Público	Tramo Privado	
Abscisado	0+000 - 1+111	1+111 - 2+024	
Velocidad de diseño	35 km/h	25 km/h	
Clase de pavimento	Empedrado	Empedrado	
Terreno	Ondulado	Montañoso	
Nº Rectas	6	30	
Nº Curvas	5	30	

	SIMBOLOGÍA
1	EMPEDRADO e=12 cm
2	Base Estabilizada con Cemento e= 0.15 cm
3	Suelo Estabilizado con Geocelda e= 0.20 cm
4	Cuneta empedrada con revestimiento de hormigón simple

	Tramo Público	Tramo Privado
TPDA actual	41 veh/día	20 veh/día
Proyección a 20 años	86 veh/día	41 veh/día
% Camiones	0.57	0.42

CONCLUSIONES

2 Km Diseño Vial 14 meses Ejecución del Proyecto \$510.540,71

Costo Inicial del Proyecto 36% Reducción de 5%

Ahorro de Costo Inicial del Proyecto vs un Diseño tradicional

Cumple con normativas locales e Internacionales (MTOP, AASHTO y Manual Andino de Estructuras con Empedrado)

\$255,27

Costo por metro lineal

Código Proyecto

