

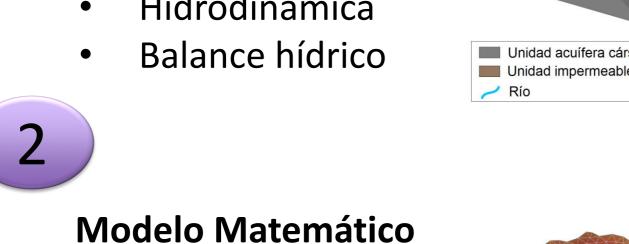
PROPUESTA DE MODELO MATEMÁTICO DE FLUJO DE AGUA SUBTERRÁNEA DE UN TAJO ABIERTO

PROBLEMA

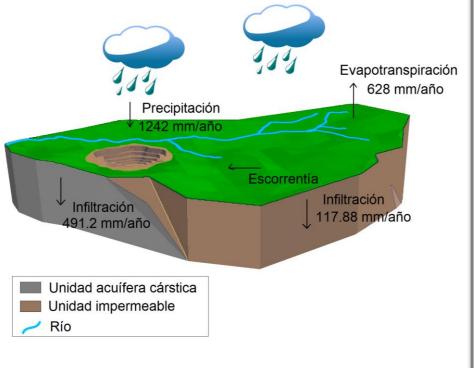
La presencia de agua dentro de las explotaciones mineras, debido al diseño deficiente del sistema de bombeo, impide realizar un drenaje óptimo. Esto desencadena problemas geotécnicos y operativos, que a su vez generan pérdidas económicas y ponen en riesgo la viabilidad del proyecto minero.

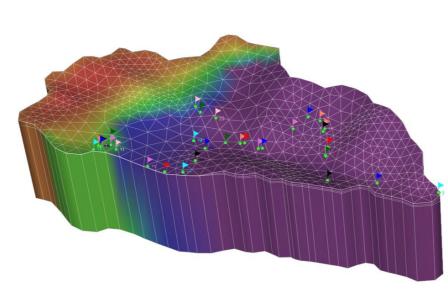
OBJETIVO GENERAL

Diseñar un modelo matemático de agua subterránea en un tajo abierto utilizando el software FEFLOW, para la simulación del drenaje en las labores mineras.

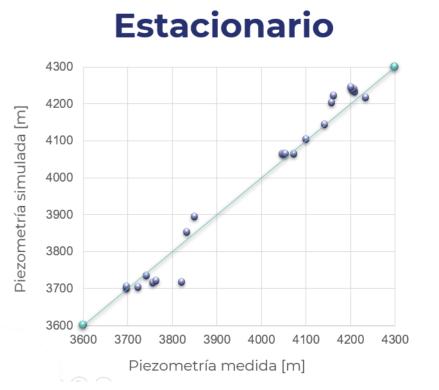

Figura 1. Agua en corta minera

PROPUESTA

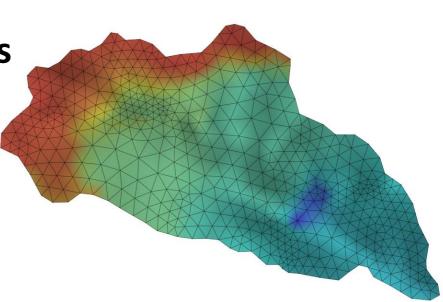

Software de modelación: FEFLOW v 5.2


Modelo Conceptual

- Geología e hidrogeología
- Hidrodinámica


- Régimen Estacionario
- Régimen **Transitorio**

Calibración y Análisis de Sensibilidad


- Recarga
- Conductividad hidráulica
- Coeficiente de almacenamiento

Simulación de Escenarios

Alternativas de drenaje

Análisis y Discusión de Resultados

RESULTADOS

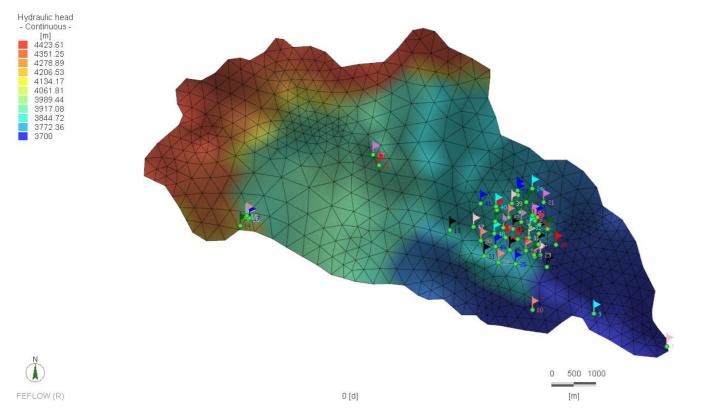


Figura 2. Simulación del drenaje a tiempo inicial

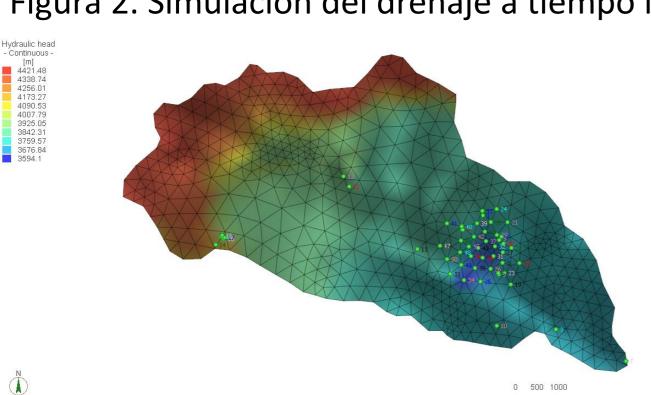


Figura 3. Simulación del drenaje al final de la explotación

Tabla 1. Balance Hídrico para diferentes escenarios

Componentes del Balance [m³/d]	Modelo estacionario	Modelo transitorio	Escenario 1	Escenario 2				
Recarga	23088.75	23088.75	15763	15763				
Flujo entrante	9473.507	9479.985	7901	7901				
Entradas	32562.257	32568.735	23664	23664				
Drenaje del tajo	0	0	30895	43177				
Flujo saliente	32562.24	32568.72	141241	193627				
Salidas	32562.24	32568.72	172136	236804				
Balance	0.017	0.015	-148472	-213140				

Tabla 2. Inversión en sistema de drenaje

Presupuesto para Escenario							
Año		8		12	15		
# Pozos		12		10	1		
Inversión	\$	211,008	\$	175,840	\$ 17,584		
Inversión total					\$ 404,432.00		

CONCLUSIONES

- A partir de la calibración del modelo se obtuvo un coeficiente de correlación del 90% entre la piezometría medida y simulada asegurando su capacidad predictiva.
- El análisis de sensibilidad permitió determinar que el parámetro más influyente en el modelo corresponde al coeficiente de almacenamiento.
- Se realizaron escenarios de drenaje dentro del tajo y se seleccionó la alternativa más viable que cuenta con 23 pozos y desciende 116 m del nivel piezométrico.
- El escenario de drenaje seleccionado presenta un radio de influencia que no afecta al recurso de las comunidades aledañas. Además, este ahorra un 43% respecto a un sistema que es implementado tradicionalmente en las explotaciones a tajo abierto.